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Abstract:  
Over the last few years, various nanofluids have been produced by suspending nonmetallic nanometer-
sized solid particles (˂ 100 nm) in heat transfer fluids like water, and ethylene glycol. The thermo-
physical properties in terms of thermal conductivity, viscosity, and heat and mass transfer 
characteristics have been widely investigated for their potential thermodynamic applications. In the 
present work, different supervised machine learning and back-propagated deep neural network 
(BDNN) methods were adopted to predict the thermal conductivity and viscosity of Al2O3 nanoparticles 
dispersed in several base fluids of water and ethylene glycol W–EG. The training data were collected 
from previously reported experimental data to be applied in BDNN and two different machine learning 
models, polynomial regression model (PRM) and decision tree regression (DTR). In addition, other 
proposed BDNNs were built up, tested, and evaluated using different numbers of hidden layers and 
neurons to determine the optimum network architecture in terms of its predictive precision. 
Furthermore, to assess the accuracy and predictive ability of all three prediction algorithms, statistical 
indices including root mean square error (RMSE), relative error (r), and regression coefficient R2 
coupling with regression graphs using the training data sets were used. The results indicated that 
BDNN is the most efficient model in predicting the thermo-physical properties of W–EG Al2O3, showing 
great agreement between simulated and targeted dependent variables with excellent accuracy of up to 
996% and 998% for thermal conductivity and viscosity, respectively. In contrast, the PRM has low 
predictive capability and unsatisfactory performance with higher RMSE values of 0.0132 and 0.0201 
for thermal conductivity and viscosity, respectively. 
  
Keywords: Al2O3 Nanofluids; Back-Propagated Deep Neural Network; Decision Tree; Polynomial 
Regression; Thermal Conductivity; Viscosity. 
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 الملخص 
جزيئات صلبة غير معدنية بحجم   مزجلى مدى السنوات القليلة الماضية، تم إنتاج العديد من السوائل النانوية عن طريق  ع

. تم فحص الخصائص الفيزيائية الحرارية  جلايكول  يثيلينالإلحرارة مثل الماء و  ل   ةقلانانومتر( في سوائل ن  100النانومتر )
الموصلية الحرارية   الحرارة والكتلة على نطاق واسعمن حيث  الديناميكية   نظرا  واللزوجة وخصائص انتقال  لتطبيقاتها 

الحرارية المحتملة. في هذا العمل، تم اعتماد طرق مختلفة للتعلم الآلي الخاضع للإشراف والشبكة العصبية العميقة ذات 
ة في العديد ختلطالم النانويةأكسيد الألومنيوم    جسيماتؤ بالموصلية الحرارية واللزوجة لللتنب (BDNN) الانتشار العكسي

تم جمع بيانات التدريب من البيانات التجريبية  في هذه الدراسة    (W-EG) .  يكولمن السوائل الأساسية للماء والإيثيلين جلا
لانحدار متعدد نموذج ا  وهما:  مختلفين للتعلم الآلي  اخرين  ونموذجين BDNN نماذج  سابقًا ليتم تطبيقها فينشرها  التي تم  
المقترحة الأخرى     BDNN  بالإضافة إلى ذلك، تم إنشاء شبكات (DTR) .  ر انحدار شجرة القرانموذج  و (PRM) الحدود

العصبية لتحديد بنية الشبكة المثلى  الاصطناعية  واختبارها وتقييمها باستخدام أعداد مختلفة من الطبقات المخفية والخلايا  
من حيث الدقة التنبؤية. علاوة على ذلك، لتقييم الدقة والقدرة التنبؤية لجميع خوارزميات التنبؤ الثلاثة، تم استخدام المؤشرات  

مع    ةالمقترن 2R ومعامل الانحدار  (r)والخطأ النسبي  (RMSE)ئية بما في ذلك خطأ الجذر التربيعي المتوسطالإحصا
هو النموذج الأكثر كفاءة في  BDNN الرسوم البيانية للانحدار باستخدام مجموعات بيانات التدريب. أشارت النتائج إلى أن

ة حقيقية والتنبئيظُهر اتفاقًا كبيرًا بين المتغيرات التابعة الم  حيث،  ومنيوملاكسيد الالالتنبؤ بالخصائص الفيزيائية الحرارية  
 PRM نموذج  تمتعي٪ للتوصيل الحراري واللزوجة، على التوالي. في المقابل،  998٪ و  996بدقة ممتازة تصل إلى  

لحراري واللزوجة،  للتوصيل ا  0.0201و    0.0132تبلغ   مرتفعة  RMSE  بقدرة تنبؤية منخفضة وأداء غير مرض مع قيم
   .على التوالي

 
المفتاحية: النانوية    الكلمات  الألومنيوم  لأالموائع  الانتشار  كسيد  ذات  العميقة  العصبية  الشبكة  القرار،  العكسي،  ، شجرة 

 . الانحدار متعدد الحدود، الموصلية الحرارية، اللزوجة
Introduction 
Nanofluids as smart fluids have gained enormous attention from scientists and engineers due to their 
excellent thermo-physical properties, such as thermal conductivity, thermal diffusivity, viscosity, and the 
ability to enhance the heat transfer rate compared to their microsized counterparts. Even though base 
heat transfer fluids such as water, thermal oil, acetone, decene, and ethylene glycol have been usually 
utilized in several industrial and commercial platforms, including power generation, heating, and cooling 
processes, they are still unable to achieve the required performance for thermal and mechanical devices 
due to their low thermal conductivity. However, when nanoparticles are added to the base fluids, the 
thermo-physical properties of these fluids can be significantly improved by enhancing the thermal 
conductivity, hence boosting the capability of heat transfer, increasing stability, reducing energy 
consumption, and speeding up the machine performance [1]. In general, nanofluids research has rapidly 
grown and exploited in many engineering and industrial applications, including heating and cooling 
systems [2], solar energy field [3], drug delivery and biomedical technology [4], nuclear reactors [5], 
thermal processing of food products [6]. In particular, the viscosity and thermal conductivity of nanofluids 
have been hot research topics in many theoretical and experimental literatures over recent years due 
to their significant role in the enhancement of heat transfer applications. Further, the viscosity and 
thermal conductivity have been mostly utilized to understand the heat transfer characteristics and 
energy transfer mechanisms of nanofluids.  
 
In addition, machine learning and artificial intelligence methods have made enormous evolutions in 
estimating the thermal conductivity and viscosity of nanofluids. Wang et al. [7] enhanced the accuracy 
in predicting the thermal conductivity of  Cu/Al2O3-EG/W hybrid nanofluids using a genetic 
algorithm (GA) and a mind evolutionary algorithm (MEA) coupled with a back propagation neural 
networks (BPNNs). They found that the BPNNs produced higher prediction accuracy compared to 
binary PRM. Barai et al. [8] predicted the thermal conductivity of rGO nanocomposite-based nanofluids 
using an artificial neural network (ANN) model. The predicted thermal conductivity was in reasonable 
agreement with the experimental data and showed a correlation coefficient of 0.956. He et al. [9] 
modeled the thermal conductivity of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using 
ANNs and the surface fitting method. The experimental data sets of nanoparticle volume fraction and 
temperature were considered as input variables, while thermal conductivity was the output response. It 
showed that the ANNs provided a good agreement between the simulated and actual data sets with 
higher precision.  
 
Sharma et al. [10] modeled the thermal conductivity of a TiO2–water nanofluid by ANN models coupled 
with gradient boosting (GB), support vector regression (SVR), DTR, and random forest (RF). The 
dataset covers different characteristics of nanofluids, including the size and shape of nanoparticles, 

https://www.sciencedirect.com/topics/engineering/genetic-algorithm
https://www.sciencedirect.com/topics/engineering/genetic-algorithm
https://www.sciencedirect.com/topics/chemical-engineering/neural-network
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volume fraction of the nanoparticles, temperature, and thermal conductivity. Upon comparative analysis 
of these algorithms, it was found that the GB model was the optimum algorithm with a high accuracy of 
99%. In the current paper, BDNN, DTR, and PRM were applied to accurately predict the thermal 
conductivity and viscosity of Al2O3 nanoparticles dispersed in several base fluids (20:80%, 40:60%, 
60:40%) of W–EG mixtures under temperatures between 20 °C and 60 °C and in volume concentrations 
between 0.3% and 1.5% [11]. 
 

Material and Methods 
BDNNs Modelling 
The focus of this study is on the modeling and estimation of the thermo-physical properties of Al2O3 
nanoparticles dispersed in several weight concentrations of EG-W base fluids. Hence, thermal 
conductivity and viscosity were predicted as a function of volume concentrations and temperatures, so 
for modeling, these two independent key variables were considered input parameters while the thermal 
conductivity and viscosity were the output responses of the networks. Traditional theoretical techniques 
and simulations such as Hamilton-Crosse [12,13], Maxwell [14], Einstein model [15], and Bruggeman 
[16] have their obstacles and challenges for precisely estimating the nanofluids flow features in different 
media. In these methods, nanoparticles are usually treated as idealized spherical-shaped particles at 
low-volume concentrations with no interactions between them. For instance, according to the Maxwell 
model nanoparticles are disconnected and immobile within a continuous environment [14]. Moreover, 
classical data-driven models of numerical simulations and correlations, such as molecular dynamics 
(MD) and finite element analysis (FEA) can produce important acuity. However, these models could not 
be efficiently used for the complex and dynamic behaviour of fluid parameters as the precision of their 
predictability is still under debate. Further, variation in the nanoparticle concentrations could lead to a 
change in the thermo-physical characteristics of the nanofluids, which required to be considered in the 
theoretical simulations.   
 
On the other hand, artificial intelligence approaches illustrated by machine learning methods have 
interestingly grown in developing trustable prediction models with many benefits in terms of accuracy, 
credibility, and cost efficiency. These novel models have significant roles in manipulating and training 
different datasets under several complicated conditions, determining general patterns of simulated data, 
and yielding higher performance than other correlation algorithms. From an applications perspective, it 
is highly recommended to design a sophisticated artificial system and machine learning technique to 
deal with complicated, nonlinear interactions without needing to do certain computing equations of the 
multi-factorial thermo-physical mechanism of nanofluids. In particular, multilayer perceptron BDNNs are 
one of the most frequently used artificial intelligence methods due to their efficiency in approximating 
nonlinear and complex relationships and enhancing the thermal characteristics of nanofluids [17]. 
Generally, artificial neural networks (ANNs) imitate the synaptic structure of human neurons in 
manipulating data and receiving rules. In BDNNs, the artificial networks consist of more than one hidden 
layer of neurons (nodes), and according to the convolution and noise of training data, the hidden layers 
themselves can contain more than one layer. The nodes are summed up in the first layer and connected 
to the nodes of the next layer by weight vectors [18]. The output of the network (yj) can be defined for 
a group of the input variables (x) as shown in Eq.1 [19]. 
 

𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑗)      𝑗 = 1,2, … … . , 𝐾                                   (1) 

 
Where xi describes the input vector, wji and b are respectively, the weights and biases, K represents 
the number of nodes, and f is the activation function. By using the training data, the values of weights 
and biases are calibrated according to the appropriate loss function, which represents the divergence 
between predicted and actual data. During an iterative process, the weights of neurons are optimized 
to minimize the gradient error between the experimental and predicted parameters and get an optimal 
output. When this target is accomplished, the training procedure is ended, the bias and weight values 
are maintained constant, and the simulation process of the considered dependent variables is initiated. 
The learning procedure in multi-layered BDNNs is achieved by adjusting the bias and weight using the 
back propagation technique and optimization algorithms such as a scaled conjugate gradient, which is 
adopted in this research by applying the sigmoid function in the hidden layers as an activation function. 
The sigmoid function is expressed in Eq.2. 
 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                                         (2) 
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In the present study, the trial and error approach was chosen to identify the optimal BDNN architecture. 

Since the performance and accuracy of the artificial network are extremely influenced by the number of 

neurons in the hidden layers, several BDNNs are built and trained for each suggested neuron number 

in the hidden layers, which are considered from 3 to 12 neurons, to find the desired number of neurons 

in these layers. For each iteration, the performance is further evaluated, in terms of RMSE; hence the 

desired architecture of BDNN would represent the lowest value of RMSE.  

Table 1: The impact of several numbers of neurons on the BDNN performance. 

Neurons number RMSE 

3 0.0567 

4 0.0473 

5 0.0278 

6 0.0586 

7 0.0722 

8 0.0434 

9 0.0149 

10 0.1074 

11 0.1101 

12 0.2201 

 
Based on the illustrated results in Table 1 and Figure 1, the optimum neuron set is 9 in the first hidden 

layers. After developing the promising performance, the thermal conductivity and viscosity of W–EG 

Al2O3 nanofluids can be estimated with high accuracy using a three-layered BDNN with 9 and 2 neurons 

in the first and second hidden layers, respectively, and one neuron in the output layer. The BDNN 

architecture is illustrated in Figure 2. 

 
Figure 1:  Variation of RMSE with the different number of neurons in the first hidden layer. 

 

 
Figure 2: The structure of BDNN used for prediction of the thermal conductivity and viscosity of W–

EG Al2O3 nanofluids. 



38 | Afro-Asian Journal of Scientific Research (AAJSR)  

 

Machine Learning-Based Modelling 
In this research, two different machine learning algorithms, i.e., PRM and DTR are applied as predictive 
models to simulate the thermal conductivity and viscosity of W–EG Al2O3 nanofluids. DTR has become 
one of the most popular supervised machine learning algorithms for solving regression and 
classification problems. Due to their clarification, simplicity of utilization, and efficiency in dealing with 
numerical and categorical variables, the DTR approach is adopted in many fields, including statistics, 
artificial intelligence learning, pattern recognition, and data mining. The decision tree consists of nodes 
describing feature tests and branches describing responses to these tests, culminating in leaf nodes 
that produce the predictive output. In the tree, every node can decide according to the input variables, 
increasing the model precision through variance reduction [20]. The instance space is divided by the 
test node into two or more sub-spaces based on a specific discrete function of the input feature values. 
In this model, each node is classified based on the cost function expressed as [21]. 
 

𝐽(𝑘, 𝑡𝑘) =
𝑚𝐿

𝑚
𝑀𝑆𝐸𝐿 +

𝑚𝑅

𝑚
𝑀𝑆𝐸𝑅                                                          (3) 

 
Where k is the splitting feature, tk is the threshold, MSE is the mean square error and m, mL and mR are 
the total number of training instances, left-node and right-node training instances, respectively. In 
addition, PRM is one of the most effective machine learning algorithms, which extensively have been 
used for prediction tasks. In general, PRM is an additional expansion to simple linear regression that 
provides a good prediction by modelling main properties into higher-order terms of the independent 
parameters, determining complicity underlying curvature or non-linear patterns. Mathematically, the 
PRM can be expressed by the following equation [22]. 
 

𝑦 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥𝑖
2 + 𝑏3𝑥𝑖

3 + ⋯ … . . 𝑏𝑘𝑥𝑖
𝑘 + 𝑒𝑖             𝑖 = 1,2, … . . , 𝑛       (4) 

 
Where y is the dependent variable, x is the independent predictor variable, b0 represents the Y-intercept 
of the regression surface, (b1-bn) are the slopes of the regression surface with respect to variable xi, k 
is the degree of the polynomial, and ei is the random error component. 
 
Results and Discussion 
As demonstrated previously as presented Figure 2, the best topography of BDNNs applied in the current 
study has four layers, i.e., one input layer with two neurons, one output layer with one neuron, and two 
hidden layers with 11 neurons. A systematic strategy to predict the thermal conductivity and viscosity 
of W–EG Al2O3 nanofluids based on various steps starting by gathering experimental data, defining 
learning algorithms, activation functions, number of hidden layers and neurons, and ending by 
calculating the performance and regression coefficients of the BDNN models. Therefore, the input 
datasets of temperature and volume concentrations with regard to the thermal conductivity and viscosity 
as the network outcomes were trained, tested, and validated. The experimental input data are usually 
divided into three parts, namely training, testing, and validating, and the training part has more data 
than the testing in order to validate the generalization ability of models. Some statistical metrics, 
including RMSE, the correlation coefficient R2, and relative error (r) are calculated to evaluate the model 
performance and accuracy and figure out the relationships between the input independent variables 
and the simulated outcomes of models. Further, these statistical indices can deliver a clear vision of the 
costs and benefits of the proposed methods, helping to make righteous decisions about the optimization 
algorithms. The RMSE is estimated by identifying the average distance between the predicted and 
actual parameters by equation (5). 
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
                                                    (5) 

 
The correlation coefficient R2 is another measure of the model's accuracy that can be estimated by 
equation (6). The perfectly accurate model would be at (𝑅2 =1).  
 

𝑅2 = (
∑ (𝑦𝑖−�̅�𝑖)(�̂�𝑖−�̅̂�𝑖)𝑛

𝑖=1

√∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

√∑ (�̂�𝑖−�̅̂�𝑖)
2𝑛

𝑖−1

)

2

                                   (6) 
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Table 2: The performance evaluation of the three proposed models. 

Model property EG-W base fluids RMSE (Test) R2 r 

BDNN Thermal conductivity 20:80 0.0042 0.99487 0.067 

BDNN Thermal conductivity 60:40 0.0031 0.99602 0.036 

BDNN Thermal conductivity 40:60 0.0051 0.99371 0.075 

DTR Thermal conductivity 20:80 0.0101 0.9549 - 
PRM Thermal conductivity 20:80 0.0132 0.93318 - 

BDNN Viscosity 20:80 0.0021 0.99845 0.012 

BDNN Viscosity 60:40 0.0023 0.99757 0.018 

BDNN Viscosity 40:60 0.0027 0.99584 0.023 

DTR Viscosity 20:80 0.0107 0.9627 - 
PRM Viscosity 20:80 0.0201 0.90828 - 

 

The last index is the relative error (r), which can be determined by Eq.7 [23]. 
 

𝑟 = |
𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑜𝑢𝑡−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑜𝑢𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑜𝑢𝑡
| × 100                                                (7) 

 
Where 𝑦𝑖 and �̂�𝑖 are the targeted values and predicted values of the thermal conductivity and viscosity 

respectively, while �̅�𝑖  and   �̅̂�𝑖 are the mean values of targeted and predicted thermal conductivity and 
viscosity, respectively, and n is the total number of experimental datasets. Detailed predicted results 
using these statistical indicators for all suggested algorithms are summarized in Table 2. 
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Figure 3:  A comparison of the experimental and predicted thermal conductivity of W–EG Al2O3 

nanofluids at various concentrations using BDNN. 
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Figure 4:  A comparison of the experimental and predicted viscosity of W–EG Al2O3 nanofluids at 

various concentrations using BDNN. 
 
Using the training and test experimental data sets, the performance of all three algorithms is estimated 
to forecast the thermal conductivity and viscosity of W–EG Al2O3 nanofluids. The scatter graphs for the 
estimated thermal conductivity and viscosity of W–EG Al2O3 nanofluids in abroad ranging temperature 
and particle concentration against the experimental ones using BDNNs are respectively illustrated in 
Figure 3 and 4. It is obvious from these figures that the predicted and the experimental values of thermal 
conductivity and viscosity are closely aligned, indicating a significant interrelationship between 
simulated and targeted values of these thermo-physical properties and confirming the high predictive 
ability of BDNNs in discovering hidden behavior of the input experimental datasets for thermal 
conductivity and viscosity. In addition, quantitatively evaluated indices represented in Table 2 showed 
that the BDNNs provide the best performance with higher accuracy and reliability in terms of low RMSE 
and relative error values and high R2 values near to one, and subsequently referring to perfect 
estimation results using the training datasets. 
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Figure 5:  A comparison of the experimental and predicted thermal conductivity and viscosity of W–

EG Al2O3 nanofluids at various concentrations using the DTR model. 

 
Furthermore, a comparison of the experimental and predicted thermal conductivity and viscosity of W–
EG Al2O3 nanofluids at various concentrations using the DTR algorithm is illustrated in Figure 5. It can 
be seen that most points of experimental and predicted parameters are clustered within a stated interval 
but, some points are dispersed which influence the model accuracy. However, the DTR still performs 
well according to the model evaluation results represented by estimated indices.  
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Figure 6:  A comparison of the experimental and predicted thermal conductivity and viscosity of W–

EG Al2O3 nanofluids at various concentrations using the PRM. 
 

The DTR provides satisfactory performance with lower RMSE of 0.0107 and 0.0101 and higher R2 of 
0.9627 and 0.9549 for viscosity and thermal conductivity, respectively. In general, the obtained result 
from BDNN and DTR models confirmed that these two algorithms provide superior learning efficiency 
and a powerful ability to address the complex connections among the experimental independent 
variables and thermo-physical properties of W–EG Al2O3 nanofluids. Further, the experimental and 
predicted thermal conductivity and viscosity of W–EG Al2O3 nanofluids at various concentrations using 
PRM algorithm are compared and illustrated in Figure 6. The PRM showed a lower level of precision in 
estimating the thermo-physical properties of W–EG Al2O3 nanofluids with slightly higher RMSE of 
0.0132 and 0.0201 and lower R2 of 0.9331and 0.9082 for thermal conductivity and viscosity, 
respectively compared to BDNN and DTR models (see Table 2). 
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Figure 7: 3D-surface plots of the predicted thermal conductivity and viscosity of W–EG Al2O3 

nanofluids by BDNN. 

 
To further grasp patterns and insights hiding within complicated nonlinear relationships of thermo-
physical properties, the variation of the predicted thermal conductivity and viscosity of W–EG Al2O3 
nanofluids with temperatures between 0 °C and 60 °C for the volumetric concentration of 0.3% and 1% 
is visualized by 3D surface plots as shown in Figure 7. Based on represented data of the nanofluids 
properties it found that W–EG Al2O3 nanofluids have a significant and strongly temperature and 
volumetric concentration-dependent thermal conductivity. Thus, an increase in volume concentrations 
and temperatures increased the thermal conductivity of nanofluids. In addition, it can be clearly noticed 
that the thermal conductivity of W–EG Al2O3 nanofluids is not only enhanced by the temperature and 
volumetric concentration but it is also improved by the base fluids. As higher thermal conductivity base 
fluids can efficiently produce higher thermal conductivity nanofluids than lower thermal conductivity 
base fluids. Therefore, the most significant enhancement of thermal conductivity of nearly 32.26% was 
accomplished at EG/W base nanofluid of 20:80% and the particle concentration of 1.5% at a 
temperature of 60 °C. In a similar way, the viscosity of W–EG Al2O3 nanofluid increases as particle 
concentrations increase however it reduces with an increase of temperatures. Hence, the best 
enhancement of the nanofluids viscosity of approximately 2.58 times was found at the highest particle 
concentration of 1.5% and a temperature of 0 °C. Similarly, higher viscosity base fluid can develop 
higher viscosity nanofluids than lower viscosity base fluids. 
 
Conclusion 
In this research, a simulation strategy based on different data-driven techniques, including BDNNs, 
DTR, and PRM, is conducted to efficiently predict the thermal conductivity and viscosity of W–EG Al2O3 
nanofluid. To find an optimized architecture of BDNN with lower values of RMSE, which is later selected 
to train the input data, several structures were examined using a trial-and-error approach. Additionally, 
the performance of these algorithms was evaluated by various statistical indices to identify the most 
applicable and reliable model in estimating the thermo-physical properties. Amongst these proposed 
models, the BDNNs were the superior model with a higher predictive accuracy of 0.99602 and 0.99845 
for thermal conductivity and viscosity, respectively. Besides, the accuracy of the predictability for The 
DTR is lower than that of BDNNs; however, it still performs well with overall R2 of 0.9627 and 0.9549 
for viscosity and thermal conductivity, respectively. On the other hand, the PRM showed the highest 
RMSE values, indicating less precision in predicted variables. Due to the capability and simplicity of the 
proposed BDNNs in processing the multivariate nonlinear features of nanofluids, it suggested using it 
for investigating other different properties, for instance, size and shape of particles, clustering of 
particles, the fluid temperature and their effect on the thermal conductivity and viscosity of nanofluids. 

https://www.sciencedirect.com/topics/materials-science/thermal-conductivity
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