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Abstract:

Over the last few years, various nanofluids have been produced by suspending nonmetallic nanometer-
sized solid particles (< 100 nm) in heat transfer fluids like water, and ethylene glycol. The thermo-
physical properties in terms of thermal conductivity, viscosity, and heat and mass transfer
characteristics have been widely investigated for their potential thermodynamic applications. In the
present work, different supervised machine learning and back-propagated deep neural network
(BDNN) methods were adopted to predict the thermal conductivity and viscosity of Al203 nanoparticles
dispersed in several base fluids of water and ethylene glycol W—-EG. The training data were collected
from previously reported experimental data to be applied in BDNN and two different machine learning
models, polynomial regression model (PRM) and decision tree regression (DTR). In addition, other
proposed BDNNs were built up, tested, and evaluated using different numbers of hidden layers and
neurons to determine the optimum network architecture in terms of its predictive precision.
Furthermore, to assess the accuracy and predictive ability of all three prediction algorithms, statistical
indices including root mean square error (RMSE), relative error (r), and regression coefficient R?
coupling with regression graphs using the training data sets were used. The results indicated that
BDNN is the most efficient model in predicting the thermo-physical properties of W—EG Al2O3, showing
great agreement between simulated and targeted dependent variables with excellent accuracy of up to
996% and 998% for thermal conductivity and viscosity, respectively. In contrast, the PRM has low
predictive capability and unsatisfactory performance with higher RMSE values of 0.0132 and 0.0201
for thermal conductivity and viscosity, respectively.

Keywords: Alz0Os Nanofluids; Back-Propagated Deep Neural Network; Decision Tree; Polynomial
Regression; Thermal Conductivity; Viscosity.
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Introduction

Nanofluids as smart fluids have gained enormous attention from scientists and engineers due to their
excellent thermo-physical properties, such as thermal conductivity, thermal diffusivity, viscosity, and the
ability to enhance the heat transfer rate compared to their microsized counterparts. Even though base
heat transfer fluids such as water, thermal oil, acetone, decene, and ethylene glycol have been usually
utilized in several industrial and commercial platforms, including power generation, heating, and cooling
processes, they are still unable to achieve the required performance for thermal and mechanical devices
due to their low thermal conductivity. However, when nanoparticles are added to the base fluids, the
thermo-physical properties of these fluids can be significantly improved by enhancing the thermal
conductivity, hence boosting the capability of heat transfer, increasing stability, reducing energy
consumption, and speeding up the machine performance [1]. In general, nanofluids research has rapidly
grown and exploited in many engineering and industrial applications, including heating and cooling
systems [2], solar energy field [3], drug delivery and biomedical technology [4], nuclear reactors [5],
thermal processing of food products [6]. In particular, the viscosity and thermal conductivity of nanofluids
have been hot research topics in many theoretical and experimental literatures over recent years due
to their significant role in the enhancement of heat transfer applications. Further, the viscosity and
thermal conductivity have been mostly utilized to understand the heat transfer characteristics and
energy transfer mechanisms of nanofluids.

In addition, machine learning and artificial intelligence methods have made enormous evolutions in
estimating the thermal conductivity and viscosity of nanofluids. Wang et al. [7] enhanced the accuracy
in predicting the thermal conductivity of Cu/Al203-EG/W hybrid nanofluids using a genetic
algorithm (GA) and a mind evolutionary algorithm (MEA) coupled with a back propagation neural
networks (BPNNs). They found that the BPNNs produced higher prediction accuracy compared to
binary PRM. Barai et al. [8] predicted the thermal conductivity of rtGO nanocomposite-based nanofluids
using an artificial neural network (ANN) model. The predicted thermal conductivity was in reasonable
agreement with the experimental data and showed a correlation coefficient of 0.956. He et al. [9]
modeled the thermal conductivity of ZnO-Ag (50%-50%)/Water hybrid Newtonian nanofluid using
ANNs and the surface fitting method. The experimental data sets of nanoparticle volume fraction and
temperature were considered as input variables, while thermal conductivity was the output response. It
showed that the ANNs provided a good agreement between the simulated and actual data sets with
higher precision.

Sharma et al. [10] modeled the thermal conductivity of a TiO2—water nanofluid by ANN models coupled

with gradient boosting (GB), support vector regression (SVR), DTR, and random forest (RF). The
dataset covers different characteristics of nanofluids, including the size and shape of nanopatrticles,
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volume fraction of the nanopatrticles, temperature, and thermal conductivity. Upon comparative analysis
of these algorithms, it was found that the GB model was the optimum algorithm with a high accuracy of
99%. In the current paper, BDNN, DTR, and PRM were applied to accurately predict the thermal
conductivity and viscosity of Al2Os nanoparticles dispersed in several base fluids (20:80%, 40:60%,
60:40%) of W—EG mixtures under temperatures between 20 °C and 60 °C and in volume concentrations
between 0.3% and 1.5% [11].

Material and Methods

BDNNs Modelling

The focus of this study is on the modeling and estimation of the thermo-physical properties of Al2O3
nanoparticles dispersed in several weight concentrations of EG-W base fluids. Hence, thermal
conductivity and viscosity were predicted as a function of volume concentrations and temperatures, so
for modeling, these two independent key variables were considered input parameters while the thermal
conductivity and viscosity were the output responses of the networks. Traditional theoretical techniques
and simulations such as Hamilton-Crosse [12,13], Maxwell [14], Einstein model [15], and Bruggeman
[16] have their obstacles and challenges for precisely estimating the nanofluids flow features in different
media. In these methods, nanoparticles are usually treated as idealized spherical-shaped particles at
low-volume concentrations with no interactions between them. For instance, according to the Maxwell
model nanoparticles are disconnected and immobile within a continuous environment [14]. Moreover,
classical data-driven models of numerical simulations and correlations, such as molecular dynamics
(MD) and finite element analysis (FEA) can produce important acuity. However, these models could not
be efficiently used for the complex and dynamic behaviour of fluid parameters as the precision of their
predictability is still under debate. Further, variation in the nanopatrticle concentrations could lead to a
change in the thermo-physical characteristics of the nanofluids, which required to be considered in the
theoretical simulations.

On the other hand, artificial intelligence approaches illustrated by machine learning methods have
interestingly grown in developing trustable prediction models with many benefits in terms of accuracy,
credibility, and cost efficiency. These novel models have significant roles in manipulating and training
different datasets under several complicated conditions, determining general patterns of simulated data,
and yielding higher performance than other correlation algorithms. From an applications perspective, it
is highly recommended to design a sophisticated artificial system and machine learning technique to
deal with complicated, nonlinear interactions without needing to do certain computing equations of the
multi-factorial thermo-physical mechanism of nanofluids. In particular, multilayer perceptron BDNNs are
one of the most frequently used artificial intelligence methods due to their efficiency in approximating
nonlinear and complex relationships and enhancing the thermal characteristics of nanofluids [17].
Generally, artificial neural networks (ANNSs) imitate the synaptic structure of human neurons in
manipulating data and receiving rules. In BDNNSs, the artificial networks consist of more than one hidden
layer of neurons (nodes), and according to the convolution and noise of training data, the hidden layers
themselves can contain more than one layer. The nodes are summed up in the first layer and connected
to the nodes of the next layer by weight vectors [18]. The output of the network (y;) can be defined for
a group of the input variables (x) as shown in Eqg.1 [19].

y] = f(2?=1 le-xl- + b]) ] = 1,2, ,K (1)

Where xi describes the input vector, wj and b are respectively, the weights and biases, K represents
the number of nodes, and f is the activation function. By using the training data, the values of weights
and biases are calibrated according to the appropriate loss function, which represents the divergence
between predicted and actual data. During an iterative process, the weights of neurons are optimized
to minimize the gradient error between the experimental and predicted parameters and get an optimal
output. When this target is accomplished, the training procedure is ended, the bias and weight values
are maintained constant, and the simulation process of the considered dependent variables is initiated.
The learning procedure in multi-layered BDNNs is achieved by adjusting the bias and weight using the
back propagation technique and optimization algorithms such as a scaled conjugate gradient, which is
adopted in this research by applying the sigmoid function in the hidden layers as an activation function.
The sigmoid function is expressed in Eq.2.

1
1+e™%

o(x) =

()
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In the present study, the trial and error approach was chosen to identify the optimal BDNN architecture.
Since the performance and accuracy of the artificial network are extremely influenced by the number of
neurons in the hidden layers, several BDNNs are built and trained for each suggested neuron number
in the hidden layers, which are considered from 3 to 12 neurons, to find the desired number of neurons
in these layers. For each iteration, the performance is further evaluated, in terms of RMSE; hence the
desired architecture of BDNN would represent the lowest value of RMSE.

Table 1: The impact of several numbers of neurons on the BDNN performance.
Neurons number RMSE
0.0567
0.0473
0.0278
0.0586
0.0722
0.0434
0.0149
0.1074
11 0.1101
12 0.2201

Blo|o|~|jo|o|s|w

Based on the illustrated results in Table 1 and Figure 1, the optimum neuron set is 9 in the first hidden
layers. After developing the promising performance, the thermal conductivity and viscosity of W—EG
Al203 nanofluids can be estimated with high accuracy using a three-layered BDNN with 9 and 2 neurons
in the first and second hidden layers, respectively, and one neuron in the output layer. The BDNN
architecture is illustrated in Figure 2.

0.20 4

0.154

RMSE

[ T 8 9 0 11 12
No of neurons
Figure 1. Variation of RMSE with the different number of neurons in the first hidden layer.

Hidden Layer Synapt.. = Synapt...

Input Layer Output Layer

Figure 2: The structure of BDNN used for prediction of the thermal conductivity and viscosity of W—
EG Al203 nanofluids.
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Machine Learning-Based Modelling

In this research, two different machine learning algorithms, i.e., PRM and DTR are applied as predictive
models to simulate the thermal conductivity and viscosity of W—EG Al203 nanofluids. DTR has become
one of the most popular supervised machine learning algorithms for solving regression and
classification problems. Due to their clarification, simplicity of utilization, and efficiency in dealing with
numerical and categorical variables, the DTR approach is adopted in many fields, including statistics,
artificial intelligence learning, pattern recognition, and data mining. The decision tree consists of nodes
describing feature tests and branches describing responses to these tests, culminating in leaf nodes
that produce the predictive output. In the tree, every node can decide according to the input variables,
increasing the model precision through variance reduction [20]. The instance space is divided by the
test node into two or more sub-spaces based on a specific discrete function of the input feature values.
In this model, each node is classified based on the cost function expressed as [21].

JUe, ty) = TEMSE, + =% MSEp (3)

Where k is the splitting feature, tx is the threshold, MSE is the mean square error and m, m_ and mg are
the total number of training instances, left-node and right-node training instances, respectively. In
addition, PRM is one of the most effective machine learning algorithms, which extensively have been
used for prediction tasks. In general, PRM is an additional expansion to simple linear regression that
provides a good prediction by modelling main properties into higher-order terms of the independent
parameters, determining complicity underlying curvature or non-linear patterns. Mathematically, the
PRM can be expressed by the following equation [22].

y = bg + byx; + byx? + byx? + -+ o bl + e i=12,....n (4

Wherey is the dependent variable, x is the independent predictor variable, bo represents the Y-intercept
of the regression surface, (bi-bn) are the slopes of the regression surface with respect to variable x;, k
is the degree of the polynomial, and e; is the random error component.

Results and Discussion

As demonstrated previously as presented Figure 2, the best topography of BDNNs applied in the current
study has four layers, i.e., one input layer with two neurons, one output layer with one neuron, and two
hidden layers with 11 neurons. A systematic strategy to predict the thermal conductivity and viscosity
of W—EG Al20z nanofluids based on various steps starting by gathering experimental data, defining
learning algorithms, activation functions, number of hidden layers and neurons, and ending by
calculating the performance and regression coefficients of the BDNN models. Therefore, the input
datasets of temperature and volume concentrations with regard to the thermal conductivity and viscosity
as the network outcomes were trained, tested, and validated. The experimental input data are usually
divided into three parts, namely training, testing, and validating, and the training part has more data
than the testing in order to validate the generalization ability of models. Some statistical metrics,
including RMSE, the correlation coefficient R2, and relative error (r) are calculated to evaluate the model
performance and accuracy and figure out the relationships between the input independent variables
and the simulated outcomes of models. Further, these statistical indices can deliver a clear vision of the
costs and benefits of the proposed methods, helping to make righteous decisions about the optimization
algorithms. The RMSE is estimated by identifying the average distance between the predicted and
actual parameters by equation (5).

n . 1.)2
RMSE = [Em03 5)

The correlation coefficient R2 is another measure of the model's accuracy that can be estimated by
equation (6). The perfectly accurate model would be at (R? =1).

2
R2 S 0i-y)(9i-91) (6)

/Z?=1(J/i—37i)2, Z?_l(ﬁi—f’i)z
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Table 2: The performance evaluation of the three proposed models.

Model property EG-W base fluids | RMSE (Test) R2 r
BDNN Thermal conductivity 20:80 0.0042 0.99487 | 0.067
BDNN Thermal conductivity 60:40 0.0031 0.99602 | 0.036
BDNN Thermal conductivity 40:60 0.0051 0.99371 | 0.075
DTR Thermal conductivity 20:80 0.0101 0.9549 -
PRM Thermal conductivity 20:80 0.0132 0.93318 -
BDNN Viscosity 20:80 0.0021 0.99845 | 0.012
BDNN Viscosity 60:40 0.0023 0.99757 | 0.018
BDNN Viscosity 40:60 0.0027 0.99584 | 0.023
DTR Viscosity 20:80 0.0107 0.9627 -
PRM Viscosity 20:80 0.0201 0.90828 -
The last index is the relative error (r), which can be determined by Eq.7 [23].
— Actual valuegy—predicted valuegy % 100 (7)

Actual valuegyt

Where y; and y; are the targeted values and predicted values of the thermal conductivity and viscosity
respectively, while ¥, and ; are the mean values of targeted and predicted thermal conductivity and
viscosity, respectively, and n is the total number of experimental datasets. Detailed predicted results
using these statistical indicators for all suggested algorithms are summarized in Table 2.
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Figure 3. A comparison of the experimental and predicted thermal conductivity of W—EG Al20s3
nanofluids at various concentrations using BDNN.
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Figure 4: A comparison of the experimental and predicted viscosity of W—EG Al20Oz nanofluids at
various concentrations using BDNN.

Using the training and test experimental data sets, the performance of all three algorithms is estimated
to forecast the thermal conductivity and viscosity of W—EG Al203 nanofluids. The scatter graphs for the
estimated thermal conductivity and viscosity of W—EG Al203 nanofluids in abroad ranging temperature
and particle concentration against the experimental ones using BDNNs are respectively illustrated in
Figure 3 and 4. It is obvious from these figures that the predicted and the experimental values of thermal
conductivity and viscosity are closely aligned, indicating a significant interrelationship between
simulated and targeted values of these thermo-physical properties and confirming the high predictive
ability of BDNNs in discovering hidden behavior of the input experimental datasets for thermal
conductivity and viscosity. In addition, quantitatively evaluated indices represented in Table 2 showed
that the BDNNs provide the best performance with higher accuracy and reliability in terms of low RMSE
and relative error values and high R? values near to one, and subsequently referring to perfect
estimation results using the training datasets.
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Figure 5. A comparison of the experimental and predicted thermal conductivity and viscosity of W—
EG Al203 nanofluids at various concentrations using the DTR model.

Furthermore, a comparison of the experimental and predicted thermal conductivity and viscosity of W—
EG Al:03 nanofluids at various concentrations using the DTR algorithm is illustrated in Figure 5. It can
be seen that most points of experimental and predicted parameters are clustered within a stated interval
but, some points are dispersed which influence the model accuracy. However, the DTR still performs
well according to the model evaluation results represented by estimated indices.
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Figure 6: A comparison of the experimental and predicted thermal conductivity and viscosity of W—
EG Al203 nanofluids at various concentrations using the PRM.

The DTR provides satisfactory performance with lower RMSE of 0.0107 and 0.0101 and higher R? of
0.9627 and 0.9549 for viscosity and thermal conductivity, respectively. In general, the obtained result
from BDNN and DTR models confirmed that these two algorithms provide superior learning efficiency
and a powerful ability to address the complex connections among the experimental independent
variables and thermo-physical properties of W—EG Al20s nanofluids. Further, the experimental and
predicted thermal conductivity and viscosity of W—EG Al203 nanofluids at various concentrations using
PRM algorithm are compared and illustrated in Figure 6. The PRM showed a lower level of precision in
estimating the thermo-physical properties of W-EG Al20s nanofluids with slightly higher RMSE of
0.0132 and 0.0201 and lower R? of 0.9331and 0.9082 for thermal conductivity and viscosity,
respectively compared to BDNN and DTR models (see Table 2).
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Figure 7. 3D-surface plots of the predicted thermal conductivity and viscosity of W—EG Al.03
nanofluids by BDNN.

To further grasp patterns and insights hiding within complicated nonlinear relationships of thermo-
physical properties, the variation of the predicted thermal conductivity and viscosity of W—EG Al2O3
nanofluids with temperatures between 0 °C and 60 °C for the volumetric concentration of 0.3% and 1%
is visualized by 3D surface plots as shown in Figure 7. Based on represented data of the nanofluids
properties it found that W-EG Al:03 nanofluids have a significant and strongly temperature and
volumetric concentration-dependent thermal conductivity. Thus, an increase in volume concentrations
and temperatures increased the thermal conductivity of nanofluids. In addition, it can be clearly noticed
that the thermal conductivity of W—EG Al2O3 nanofluids is not only enhanced by the temperature and
volumetric concentration but it is also improved by the base fluids. As higher thermal conductivity base
fluids can efficiently produce higher thermal conductivity nanofluids than lower thermal conductivity
base fluids. Therefore, the most significant enhancement of thermal conductivity of nearly 32.26% was
accomplished at EG/W base nanofluid of 20:80% and the particle concentration of 1.5% at a
temperature of 60 °C. In a similar way, the viscosity of W—EG Al203 nanofluid increases as particle
concentrations increase however it reduces with an increase of temperatures. Hence, the best
enhancement of the nanofluids viscosity of approximately 2.58 times was found at the highest particle
concentration of 1.5% and a temperature of 0 °C. Similarly, higher viscosity base fluid can develop
higher viscosity nanofluids than lower viscosity base fluids.

Conclusion

In this research, a simulation strategy based on different data-driven techniques, including BDNNSs,
DTR, and PRM, is conducted to efficiently predict the thermal conductivity and viscosity of W—EG Al20z
nanofluid. To find an optimized architecture of BDNN with lower values of RMSE, which is later selected
to train the input data, several structures were examined using a trial-and-error approach. Additionally,
the performance of these algorithms was evaluated by various statistical indices to identify the most
applicable and reliable model in estimating the thermo-physical properties. Amongst these proposed
models, the BDNNs were the superior model with a higher predictive accuracy of 0.99602 and 0.99845
for thermal conductivity and viscosity, respectively. Besides, the accuracy of the predictability for The
DTR is lower than that of BDNNSs; however, it still performs well with overall R? of 0.9627 and 0.9549
for viscosity and thermal conductivity, respectively. On the other hand, the PRM showed the highest
RMSE values, indicating less precision in predicted variables. Due to the capability and simplicity of the
proposed BDNNs in processing the multivariate nonlinear features of nanofluids, it suggested using it
for investigating other different properties, for instance, size and shape of particles, clustering of
particles, the fluid temperature and their effect on the thermal conductivity and viscosity of nanofluids.
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