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Abstract 
This paper introduces the concepts of generalized isolated points (𝑔-isolated points) and generalized 
perfect sets (𝑔-perfect sets) within the framework of topological spaces, using the notions of generalized 

open and generalized closed sets. In this context, the concept of generalized scattered spaces (𝑔-
scattered spaces) is also defined. A series of fundamental results is established to clarify various 
properties of these generalized topological notions. Furthermore, the study provides several 
characterizations and presents illustrative examples that reveal their structure and demonstrate their 
connections with certain classical topological notions. 
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 ملخصال
اً اعتماد  وذلك،  ولوجيةبتالفضاءات ال  في  المعممةتامة  ال  والمجموعات  ةدراسة لمفاهيم النقاط المعزولة المعمم  بحثال  ادم هذيق

تقديم مفهوم الفضاءات ايضاً    متمفهومي المجموعات المفتوحة المعممة والمجموعات المغلقة المعممة. وفي هذا السياق،    على

مجموعة من النتائج الأساسية لتوضيح خصائص هذه المفاهيم  ثبات  في هذا البحث إتم  كما  .  خواصها  ودراسة  المعممة  متناثرة ال

  ينالبنية الأساسية لهذه المفاهيم وتبُ  برزوأمثلة توضيحية ت  يقدم البحث عدة خواصبولوجية المعممة. علاوة على ذلك،  تال

 . بولوجية الكلاسيكيةتمفاهيم البعض العلاقاتها ب

 
مجموعة   مجموعة تامة معممة،  ،مفتوحة معممة، مجموعة مغلقة معممة  معممة، مجموعةمعزولة    ةنقط  :الكلمات المفتاحية

 .متناثرة معممة
Introduction 
     Generalized notions in topological spaces have played a central role in extending classical results 
and enriching the understanding of topological structures. Levine [1] was the first to introduce and 
investigate the concept of generalized closed sets (or 𝑔-closed sets). Since then, several topological 

concepts based on 𝑔-closed sets have been developed and extensively studied by many researchers 
(see, for example, [2-6]).  
     In a topological space (𝑋, 𝜏), a point 𝑝 ∈ 𝑆 ⊆ 𝑋  is called an isolated point of 𝑆 if there exists an open 

set 𝑈 such that {𝑝} = 𝑆 ∩ 𝑈. A closed set in 𝑋 without isolated points is called perfect.  𝑋 is said to be 
scattered if every nonempty subset of 𝑋 has at least one isolated point (see, for example, [7,8]). The 
author in [9] defined and studied semi-perfect sets and semi-isolated points in topology, based on the 
concept of semi-open sets defined in [10].  
     In this paper, we use the notions of  𝑔-closed and 𝑔-open sets to define new concepts, including 𝑔-

isolated points, 𝑔-perfect sets, and 𝑔-scattered spaces.  The notion of 𝑔-isolated points provide more 
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flexible conditions than the classical one, thereby generalizing the notion of isolated points in topological 
spaces.  Several interesting results and properties related to these  generalized concepts are established 
and studied. 
1. Preliminaries 
     In this section, author presents some preliminary definitions and results. Throughout this paper, 𝑋 
denotes a topological space. 

Definition 1. [1] A set 𝐴 ⊆ 𝑋  is called generalized closed (briefly, 𝑔-closed) if �̅� ⊆ 𝑉 whenever 𝑉 is 
open and 𝐴 ⊆ 𝑉. The complement of a 𝑔-closed set is called generalized open (briefly, 𝑔-open). 
 Author denotes by 𝒢𝒪(𝑋) and 𝒢𝒞(𝑋) the collections of 𝑔-open and 𝑔-closed subsets of 𝑋, respectively.  

Observation 1. [1] (1) Each closed set is  𝑔-closed.  

(2) The union (respectively, the intersection) of finitely many 𝑔-closed (respectively, 𝑔-open) sets is 𝑔-

closed (respectively, 𝑔-open). 
(3) The intersection (respectively, the union) of finitely many 𝑔-closed (respectively, 𝑔-open) sets need 

not be 𝑔-closed (respectively, 𝑔-open).  

Definition 2. [1] A space (𝑋, 𝜏) is called a 𝑇1

2

 - space if 𝒢𝒪(𝑋) = 𝜏. 

Observation 2. [1] Every 𝑇1-space is 𝑇1

2

 , and every 𝑇1

2

-space is 𝑇0. 

Theorem 1. [11] For each  𝑝 ∈ 𝑋, either {𝑝} is closed or 𝑋\{𝑝} ∈ 𝒢𝒞(𝑋). 

Definition 3. [11] Let 𝐴 ⊆ 𝑋. The set  �̅�𝑔 =∩ {𝐹: 𝐹 ∈ 𝒢𝒞(𝑋) and 𝐴 ⊆ 𝐹} is called the 𝑔-closure of 𝐴. 
Definition 4.  A function ℎ: 𝑋1 → 𝑋2 is called 

(1) 𝑔-irresolute [2] if ℎ−1(𝐹)  is 𝑔-closed in 𝑋1 whenever 𝐹 is 𝑔-closed in 𝑋2. Equivalently, if ℎ−1(𝐺)  is 𝑔-

open in 𝑋1 whenever 𝐺 is 𝑔-open in 𝑋2.  
(2) 𝑔𝑐-homeomorphism [12] if h is bijective and both h and ℎ−1 are 𝑔-irresolute. 
     The next Lemma is likely well-known, similar to the theorem related to the usual closure. Author 
provides its proof for completeness (see, [1,11,13]). 

Lemma 1. Let 𝐴 ⊆ 𝑋, then 𝑝 ∈ �̅�𝑔 if and only if 𝐺 ∩ 𝐴 ≠ 𝜙 for every 𝑔-open set 𝐺 that contains 𝑝. 
Proof.  Suppose that   𝐴 ∩ 𝐺 = 𝜙  for some 𝑔-open set 𝐺 containing  𝑝, then 𝐴 ⊆ 𝐺𝑐 .   It follows that 

�̅�𝑔 ⊆ 𝐺𝑐   since   𝐺𝑐   is  𝑔-closed.  Thus,  𝑝 ∉ �̅�𝑔.  Conversely, suppose that  𝑝 ∉ �̅�𝑔.  Since    �̅�𝑔 =
∩ {𝐻: 𝐻 is 𝑔 − closed, 𝐴 ⊆ 𝐻}, there must be a 𝑔-closed set  𝐻∗ which contains 𝐴  and 𝑝 ∉ 𝐻∗.  Hence, 

𝐴 ∩ 𝐻∗𝑐 = ∅, where 𝐻∗𝑐
 is a 𝑔-open set containing 𝑝. 

 
2. Generalized Isolated Points in Topological Spaces 
Definition 5.  Let 𝐴 ⊆ 𝑋,  a point 𝑝 ∈ 𝐴  is called a generalized isolated point of  𝐴 (briefly,  𝑔-isolated) 
if there exists  𝐺 ∈ 𝒢𝒪(𝑋) such that 𝐴 ∩ 𝐺 = {𝑝}.  
     Author denotes the set of all 𝑔-isolated points of 𝐴 by 𝐼𝑔(𝐴). 

Observation 3. All isolated points of a set are 𝑔-isolated but not conversely. For example, let 𝐴 ⊆ 𝑋, 
where 𝑋 is an infinite indiscrete space and  |𝐴| > 1. Then each point of  𝐴 is  𝑔-isolated in 𝐴 but not 
isolated. 
Lemma 2. Let 𝑋 be a topological space. 

(1) If {𝐴𝑖}𝑖=1
𝑛  is a finite family of subsets of 𝑋, and if 𝑝 is a 𝑔-isolated point of 𝐴𝑖 for each 𝑖, then 𝑝 is a  𝑔-

isolated point of ⋃ 𝐴𝑖
𝑛
𝑖=1 . 

(2) If {𝐴𝛼}𝛼∈𝐼 is any family of subsets of 𝑋,  and if 𝑝 is a 𝑔-isolated point of ⋃ 𝐴𝛼𝛼∈𝐼 , then 𝑝 is  𝑔-isolated 

in 𝐴𝛼0
 for some 𝛼0 ∈ 𝐼. 

(3) If {𝐴𝛼}𝛼∈𝐼 is any family of subsets of 𝑋, and if 𝑝 is a 𝑔-isolated point of 𝐴𝛼 for each 𝛼 ∈ 𝐼, then  𝑝 is  

𝑔-isolated in  ⋂ 𝐴𝛼𝛼∈𝐼 . 

Proof.  (1)  Let  𝑝  be a 𝑔-isolated point of  𝐴𝑖 for each  𝑖 ∈ {1, … , 𝑛}.  Then, for each  𝑖  there exists 

𝐺𝑖 ∈ 𝒢𝒪(𝑋) such that  {𝑝} = 𝐴𝑖 ∩ 𝐺𝑖. If 𝐺 = ⋂ 𝐺𝑖
𝑛
𝑖=1 , then  𝐺 ∈ 𝒢𝒪(𝑋) and  {𝑝} = (⋃ 𝐴𝑖

𝑛
𝑖=1 ) ∩ 𝐺, so 𝑝 is a 

𝑔-isolated point of ⋃ 𝐴𝑖
𝑛
𝑖=1 , as required.  

(2) Clearly, if {𝑝} = (⋃ 𝐴𝛼𝛼∈𝐼 ) ∩ 𝐺 for some 𝐺 ∈ 𝒢𝒪(𝑋), then {𝑝} = 𝐴𝛼0
∩ 𝐺 for some 𝛼0 ∈ 𝐼. 

(3) For each 𝛼 ∈ 𝐼, since 𝑝 is a 𝑔-isolated point of 𝐴𝛼, there exists 𝐺𝛼 ∈ 𝒢𝒪(𝑋) such that  {𝑝} = 𝐴𝛼 ∩ 𝐺𝛼. 

Thus, {𝑝} = (⋂ 𝐴𝛼𝛼∈𝐼 ) ∩ 𝐺∗ for some 𝐺∗ ∈ {𝐺𝛼}𝛼∈𝐼 . 
Observation 4. Lemma 2 (1) does not necessarily hold for an infinite collection of subsets of 𝑋, as 
illustrated in the next example. 

Example 1. Let us consider the collection {[0,1 −
1

𝑚
] ∪ {1}}

𝑚=1

∞

in the space ℝ. Then 1 is a 𝑔-isolated 

point of the set [0,1 −
1

𝑚
] ∪ {1} for each 𝑚 ∈ ℕ. However,  ⋃ [0,1 −

1

𝑚
] ∪ {1}∞

𝑚=1 = [0,1] and 1 is not a 𝑔-

isolated point of [0,1].  
Observation 5. The example below illustrates that the converse of Lemma 2 (3) does not necessarily 
hold. 



17 | Afro-Asian Journal of Scientific Research (AAJSR)  

 

Example 2. Consider  𝑋 = {2,4,5,6} and 𝜏 = {𝜙, 𝑋, {2,5,6}, {4,5,6}, {5,6}}. If 𝐴 =  {2,4}, then 4 is a 𝑔-

isolated point of 𝐴. But 𝐴 = {2,4,5} ∩ {2,4,6} and 4 is not a 𝑔-isolated point of either {2,4,5} or {2,4,6}.   
Theorem 2. (1) Let 𝐴1, 𝐴2 ⊆ 𝑋, then  

                     (i) 𝐼𝑔(𝐴1) ∩ 𝐼𝑔(𝐴2) ⊆ 𝐼𝑔(𝐴1 ∩ 𝐴2 ) 

                     (ii) 𝐼𝑔(𝐴1 ∪ 𝐴2) ⊆ 𝐼𝑔(𝐴1) ∪ 𝐼𝑔(𝐴2) 

(2) 𝐼𝑔 (𝐼𝑔(𝐴)) = 𝐼𝑔(𝐴) for each 𝐴 ⊆ 𝑋 

Proof. The proofs of (i) and (ii) follow directly from Lemma 2, while the proof of (2) is straightforward. 

Theorem 3.  If 𝐵 ⊆ 𝑋  has no 𝑔-isolated points, then �̅�𝑔 also has no 𝑔-isolated points. 

Proof. Assume that �̅�𝑔 has a 𝑔-isolated point 𝑝, then {𝑝} = �̅�𝑔 ∩ 𝐺 for some 𝐺 ∈ 𝒢𝒪(𝑋). Since 𝑝 ∈ �̅�𝑔 

and 𝐺 is  𝑔-open with  𝑝 ∈ 𝐺, then from Lemma 1 author has 𝐵 ∩ 𝐺 ≠ 𝜙. Since 𝐵 ∩ 𝐺 ⊆ �̅�𝑔 ∩ 𝐺 = {𝑝}, 
author has 𝐵 ∩ 𝐺 = {𝑝}, and hence 𝐵 has a 𝑔-isolated point 𝑝. 
      From Definition 5, author can restate the definition of a 𝑔-isolated point of a space as follows. 

Definition 6. A point 𝑝 ∈ 𝑋 is  𝑔-isolated in 𝑋 if {𝑝} ∈ 𝒢𝒪(𝑋). 

Observation 6. Clearly, if 𝑝 ∈ 𝐼𝑔(𝑋) then 𝑝 ∈ 𝐼𝑔(𝐴) for any  𝐴 ⊆ 𝑋 containing 𝑝. 

Example 3.  Let  𝑋 = {1,3,5,7} and 𝜏 = {𝜙, 𝑋, {1,5}, {3,7}}, then 𝒢𝒪(𝑋) = 𝒫(𝑋), the power set of 𝑋. 

Therefore, every point in 𝑋 is 𝑔-isolated.  

Theorem 4.  A point 𝑝 ∈ 𝑋 is  𝑔-isolated in 𝑋 if and only if either {𝑝} is open or {𝑝}  is neither open nor 
closed in 𝑋. 

Proof.  Clearly, if {𝑝} is open then 𝑝 ∈ 𝐼𝑔(𝑋). If {𝑝} is neither open nor closed, then  by Theorem 1, 

𝑋\{𝑝} ∈ 𝒢𝒞(𝑋), and hence {𝑝} ∈ 𝒢𝒪(𝑋); so 𝑝 ∈ 𝐼𝑔(𝑋). Conversely, if the condition above does not hold, 

then {𝑝} is closed and not open, which implies that 𝑋\{𝑝}  is open and not closed.   In this case, the 

closure of 𝑋\{𝑝}  is 𝑋, which is not contained in the open set 𝑋\{𝑝}, and this means that 𝑋\{𝑝} ∉ 𝒢𝒞(𝑋). 

Therefore, {𝑝} ∉ 𝒢𝒪(𝑋), and hence 𝑝 ∉ 𝐼𝑔(𝑋). 

Corollary 1.  𝑝 ∈ 𝐼𝑔(𝑋) if and only if either {𝑝} is not closed or {𝑝} is clepen in 𝑋. 

Corollary 2. Let {𝑋𝑖  }𝑖=1
𝑛  be a family of topological spaces. If 𝑏𝑖 is a 𝑔-isolated point of 𝑋𝑖 for each 𝑖, then 

(𝑏1, … , 𝑏𝑛) is a 𝑔-isolated point of the product space  ∏ 𝑋𝑖
𝑛
𝑖=1 . 

Proof. Suppose that (𝑏1, … , 𝑏𝑛) is not a 𝑔-isolated point in the space  ∏ 𝑋𝑖
𝑛
𝑖=1 , then Theorem 4 implies 

that the set  {(𝑏1, … , 𝑏𝑛)} is closed and not open. Since {(𝑏1, … , 𝑏𝑛)} is closed, author have: 

∏ {𝑏𝑖}
𝑛
𝑖=1 = {(𝑏1, … , 𝑏𝑛)}={(𝑏1, … , 𝑏𝑛)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∏ {𝑏𝑖}̅̅ ̅̅ ̅𝑛

𝑖=1 , 

and hence  each  {𝑏𝑖}  is  a closed subset of  𝑋𝑖. Since  {(𝑏1, … , 𝑏𝑛)}  is  not open, then there exists        

𝑗 ∈ {1, … , 𝑛} such that {𝑏𝑗} is not open in 𝑋𝑗. Therefore,  {𝑏𝑗} is closed and not open in 𝑋𝑗, so 𝑏𝑗 is not   

𝑔-isolated in  𝑋𝑗. 

Observation 7.   The converse of Corollary 2 does not hold in general; author illustrates this by the 
following example.  
Example 4. Suppose (𝑋1, 𝜏)   and   (𝑋2, 𝜏′) are topological spaces, where  𝑋1 = {1, 2},   𝜏 = {𝜙, 𝑋1},    
𝑋2 = {7,9}, and 𝜏′ = {𝜙, 𝑋2, {7}}. The point (1,9) is 𝑔-isolated in  𝑋1 × 𝑋2, whereas 9 is not 𝑔-isolated in 

𝑋2. 
Theorem 5. Suppose that ℎ: 𝑋1 → 𝑋2 is a continuous and open injection. If 𝑝 is a 𝑔-isolated point in 𝑋1, 
then  its image ℎ(𝑝) is 𝑔-isolated in 𝑋2. 

Proof. If ℎ(𝑝) is not  𝑔-isolated in 𝑋2, then from Theorem 4,  {ℎ(𝑝)} is closed and not open in 𝑋2. Since 

ℎ is continuous and open, {𝑝} is closed and not open in 𝑋1, so 𝑝 is not a  𝑔-isolated point in 𝑋1. 
Definition 7. A space 𝑋 is called generalized scattered (briefly, 𝑔-scattered) if every nonempty subset 

of 𝑋 has a 𝑔-isolated point.  

Example 5. The indiscrete space is 𝑔-scattered, whereas the space ℝ  is not. 

Observation 8. Every scattered space is 𝑔-scattered but not conversely, as shown by: 
Example 6. Let  𝑋 = {2,4,7,10} and 𝜏 = {𝜙, 𝑋, {2,10}, {4,7}}. The space 𝑋 is not scattered since {2,10} 
has no isolated points. However, 𝑋 is 𝑔-scattered since 𝒢𝒪(𝑋) = 𝒫(𝑋). 

Theorem 6. If 𝑋 is a finite topological space then 𝑋 is 𝑔-scattered. 

Proof. Let 𝜙 ≠ 𝐴 ⊆ 𝑋. If 𝐴 ∩ 𝐼𝑔(𝑋) ≠ 𝜙, then there exists 𝑝 ∈ 𝐴 ∩ 𝐼𝑔(𝑋), and by Observation 6, 𝑝 ∈ 𝐼𝑔(𝐴). 

If 𝐴 ∩ 𝐼𝑔(𝑋) = 𝜙, then, according to Theorem 4 and Observation 1, for each 𝑞 ∈ 𝐴,  𝐴\{𝑞} is a closed set 

in 𝑋. Choose 𝑏 ∈ 𝐴 and define 𝐻 = (𝐴\{𝑏})𝑐, then 𝐻 ∈ 𝒢𝒪(𝑋) and 𝐴 ∩ 𝐻 = {𝑏}, so 𝑏 ∈ 𝐼𝑔(𝐴). Thus, in 

both cases, 𝐴 has a 𝑔-isolated point.  

Theorem 7. Suppose that ℎ is a 𝑔-irresolute bijection  from a space 𝑋1 onto a 𝑔-scattered space  𝑋2, 

then  𝑋1  is also a 𝑔-scattered space. 

Proof. Let 𝜙 ≠ 𝐴 ⊆ 𝑋1.  Then ℎ(𝐴) has a 𝑔-isolated point 𝑝, so ℎ(𝐴) ∩ 𝐺 = {𝑝} for some 𝐺 ∈ 𝒢𝒪(𝑋2), 
which implies that 𝐴 ∩ ℎ−1(𝐺) = {ℎ−1(𝑝)}. Since ℎ is 𝑔-irresolute, then ℎ−1(𝐺) ∈ 𝒢𝒪(𝑋1).  Hence, ℎ−1(𝑝) 
is a 𝑔-isolated point of 𝐴. 
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3. Generalized Perfect Sets  
     Author begins by providing the definition and properties of generalized perfect spaces, followed by 
a study of perfect sets. 
Definition 8. A space 𝑋 is called generalized perfect (briefly,  𝑔-perfect) if it has no 𝑔-isolated points; 

that is, 𝐼𝑔(𝑋) = 𝜙. 

Example 7. All infinite cofinite spaces are 𝑔-perfect.  
Observation 9. If 𝑋 is 𝑔-perfect then 𝑋 is perfect, but not conversely. For example, any indiscrete space 

𝑋 with |𝑋| > 1 is perfect but not 𝑔-perfect.  

Theorem 8. A space 𝑋 is 𝑔-perfect if and only if  every singleton {𝑝} in 𝑋 is closed and not open.  
Proof.  This follows immediately from Theorem 4. 
Corollary 3.  Every 𝑔-perfect space is both a  𝑇1- space and a 𝑇1

2

-space. 

Observation 10. Clearly, the converse of the above corollary is generally false; for example, any infinite 
discrete space is a 𝑇1- space but not 𝑔-perfect. 

Theorem 9. Any nonempty 𝑔-perfect space is infinite. 
Proof.  This result follows directly from Theorem 6. 
It was shown in [7] that the cofinite topology on an infinite set 𝑋 is the smallest topology that makes 𝑋 

a 𝑇1-space, known as the minimal 𝑇1 topology. Therefore, from Corollary 3 and Example 7, the following 
result follows. 
Theorem 10. Suppose  𝜏  is the cofinite topology on an infinite set  𝑋.  If 𝜏′ ⊂ 𝜏,  then  (𝑋, 𝜏′) is not a    

𝑔-perfect space. That is, 𝜏 is the minimal topology for which 𝑋 is 𝑔-perfect. 

Theorem 11. Let 𝐸 ⊆ 𝑋 be an open set. If 𝑋 is a 𝑔-perfect space then the subspace 𝐸 is 𝑔-perfect. 
Proof. Suppose, for a contradiction, that 𝐸 is not a 𝑔-perfect space, then 𝐸 has a 𝑔-isolated point 𝑝. By 

Corollary 3, 𝑋 is a 𝑇1-space, which implies that 𝐸 is also a 𝑇1-space. Thus, from Theorem 4, {𝑝} is clopen 

in 𝐸. Since 𝐸 is open, the singleton {𝑝} must also be open in 𝑋, which contradicts the assumption that 

𝑋 is 𝑔-perfect. 
Observation 11. If 𝐸 ⊆ 𝑋 is closed, then the subspace 𝐸 need not be 𝑔-perfect. For example, if 𝐸 ≠ 𝜙  

is a finite subset of an infinite cofinite space 𝑋, then 𝐸 is closed in 𝑋 and is discrete as a subspace. 

Therefore, 𝐸 is not a 𝑔-perfect subspace. 

Definition 9. A set 𝐸 ⊆ 𝑋 is called generalized perfect (briefly, 𝑔-perfect) if it is 𝑔-closed and 𝐼𝑔(𝐸) = 𝜙.  

Example 8. Let  𝑋 = ℝ ∪ {𝑠}, where 𝑠 ∉ ℝ, and define a topology  𝜏 on 𝑋 by: 

𝜏 = {𝑈 ⊆ 𝑋: 𝑈 = 𝜙 or 𝑈 = 𝑉 ∪ {𝑠}, 𝑉 is open in ℝ }. 
Then ℝ is a 𝑔-perfect set in 𝑋.   
Observation 12.  According to Theorem 3, a space is 𝑔-scattered if it contains no nonempty 𝑔-perfect 
subsets. 
Theorem 12. If {𝐴𝑖}𝑖=1

𝑛  is a finite family of  𝑔-perfect sets in 𝑋, then ⋃ 𝐴𝑖
𝑛
𝑖=1  is also 𝑔-perfect.  

Proof. It follows directly from Observation 1 and Lemma 2 (2). 
Observation 13. According to Observation 1 (3), for a family {𝐴𝑖}𝑖=1

𝑛  of 𝑔-perfect sets in 𝑋, ⋂ 𝐴𝑖  
𝑛
𝑖=1 is not 

necessarily 𝑔-perfect. 
Theorem 13.  If 𝐵 ⊆ 𝑋 is a 𝑔-perfect set and  𝐸 ⊆ 𝐵 is clepen in 𝑋, then  𝐸 is also a 𝑔-perfect set. 

Proof. Suppose, for a contradiction, that 𝐸 is not a 𝑔-perfect set, so 𝐸 has a 𝑔-isolated point 𝑝, which 

means that there exists 𝐺 ∈ 𝒢𝒪(𝑋)  with  𝐸 ∩ 𝐺 = {𝑝}. Since 𝐸 is open,  then {𝑝} ∈ 𝒢𝒪(𝑋). By Observation 

6, it follows that 𝑝 ∈ 𝐼𝑔(𝐵), which contradicts the assumption that 𝐵 is 𝑔-perfect. 

Theorem 14. Let  𝐸 ⊆ 𝑋 be clepen in 𝑋. Then 𝑋 is a 𝑔-perfect space if and only if both 𝐸 and 𝐸𝑐  are 𝑔-
perfect sets. 
Proof. If 𝑋 is 𝑔-perfect, the proof is a direct consequence of Theorem 13. Conversely, if 𝑋 is not  𝑔-
perfect, then 𝑋 contains a 𝑔-open set {𝑝}.  Since either 𝐸 or 𝐸𝑐 contains  𝑝,  it follows that one of them 

is not 𝑔-perfect.  
     The proof of the next result is clear and thus not included here. 
Theorem 15. Suppose  ℎ: 𝑋1 → 𝑋2 is a 𝑔𝑐-homeomorphism. If 𝐸 ⊆ 𝑋1 is a 𝑔-perfect set, then 𝑓(𝐸) ⊆ 𝑋2 
is also a 𝑔-perfect set. 
Conclusion 
     In this research,  author has introduced and investigated new concepts in topological spaces based 
on   Levine’s concept of 𝑔-closed sets. The newly defined concepts of 𝑔-isolated points and 𝑔-perfect 
sets provide a new framework for studying various topological structures. Our investigation has shown 
the relationships between these generalized concepts and their corresponding classical topological 
ones, providing a richer understanding of topological spaces. 
     Additionally, these concepts can be further developed using other classes of open sets, such as 
semi-𝑔-open, regular 𝑔-open, and regular semi-open sets, which offer possible directions for 
establishing new generalized structures. 

https://en.wikipedia.org/wiki/Isolated_point
https://en.wikipedia.org/wiki/Closed_set
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     Moreover, these generalized notions allow for possible extensions into other domains within 
topology such as bitopological spaces and supra topological spaces. These extensions could lead to 
further theoretical developments. Overall, this work provides the foundation for a more generalized 
framework for studying structural properties in topological spaces. 
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