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Abstract

This paper introduces the concepts of generalized isolated points (g-isolated points) and generalized
perfect sets (g-perfect sets) within the framework of topological spaces, using the notions of generalized
open and generalized closed sets. In this context, the concept of generalized scattered spaces (g-
scattered spaces) is also defined. A series of fundamental results is established to clarify various
properties of these generalized topological notions. Furthermore, the study provides several
characterizations and presents illustrative examples that reveal their structure and demonstrate their
connections with certain classical topological notions.
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Introduction

Generalized notions in topological spaces have played a central role in extending classical results
and enriching the understanding of topological structures. Levine [1] was the first to introduce and
investigate the concept of generalized closed sets (or g-closed sets). Since then, several topological
concepts based on g-closed sets have been developed and extensively studied by many researchers
(see, for example, [2-6]).

In a topological space (X,7), apointp € S € X is called an isolated point of S if there exists an open
set U such that {p} = SN U. A closed set in X without isolated points is called perfect. X is said to be
scattered if every nonempty subset of X has at least one isolated point (see, for example, [7,8]). The
author in [9] defined and studied semi-perfect sets and semi-isolated points in topology, based on the
concept of semi-open sets defined in [10].

In this paper, we use the notions of g-closed and g-open sets to define new concepts, including g-
isolated points, g-perfect sets, and g-scattered spaces. The notion of g-isolated points provide more
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flexible conditions than the classical one, thereby generalizing the notion of isolated points in topological
spaces. Several interesting results and properties related to these generalized concepts are established
and studied.
1. Preliminaries

In this section, author presents some preliminary definitions and results. Throughout this paper, X
denotes a topological space.
Definition 1. [1] A set A € X is called generalized closed (briefly, g-closed) if A € V whenever V is
open and A € V. The complement of a g-closed set is called generalized open (briefly, g-open).
Author denotes by GO(X) and GC(X) the collections of g-open and g-closed subsets of X, respectively.
Observation 1. [1] (1) Each closed set is g-closed.
(2) The union (respectively, the intersection) of finitely many g-closed (respectively, g-open) sets is g-
closed (respectively, g-open).
(3) The intersection (respectively, the union) of finitely many g-closed (respectively, g-open) sets need
not be g-closed (respectively, g-open).
Definition 2. [1] A space (X, ) is called a T: - space if GO(X) = .

2

Observation 2. [1] Every T;-space is T1 , and every Ti-space is Tj.

2 2

Theorem 1. [11] For each p € X, either {p} is closed or X\{p} € GC(X).
Definition 3. [11] Let A € X. The set A9 =n {F:F € GC(X) and A C F} is called the g-closure of A.
Definition 4. A function h: X; — X, is called
(1) g-irresolute [2] if h=1(F) is g-closed in X; whenever F is g-closed in X,. Equivalently, if h=1(G) is g-
open in X; whenever G is g-open in X,.
(2) gc-homeomorphism [12] if h is bijective and both h and k™! are g-irresolute.

The next Lemma is likely well-known, similar to the theorem related to the usual closure. Author
provides its proof for completeness (see, [1,11,13]).
Lemma 1. Let A € X, then p € A9 if and only if G N A # ¢ for every g-open set G that contains p.
Proof. Suppose that AN G = ¢ for some g-open set G containing p, then A € G¢. It follows that
A9 € G° since G¢ is g-closed. Thus, p ¢ A9. Conversely, suppose that p ¢ A9. Since A9 =
N{H:H is g — closed, A < H}, there must be a g-closed set H* which contains A and p ¢ H*. Hence,
AN H* =@, where H*C is a g-open set containing p.

2. Generalized Isolated Points in Topological Spaces
Definition 5. Let A € X, a point p € A is called a generalized isolated point of A (briefly, g-isolated)
if there exists G € GO(X) suchthat An G = {p}.

Author denotes the set of all g-isolated points of A by I, (A4).
Observation 3. All isolated points of a set are g-isolated but not conversely. For example, let A € X,
where X is an infinite indiscrete space and |A| > 1. Then each point of A is g-isolated in A but not
isolated.
Lemma 2. Let X be a topological space.
(1) If {A;}7-, is afinite family of subsets of X, and if p is a g-isolated point of 4; for each i, thenp is a g-
isolated point of Ui~ 4;.
(2) If {A}ae; is any family of subsets of X, and if p is a g-isolated point of U,¢; 44, then p is g-isolated
in Ag, for some «, € 1.
(3) If {A,3}qer is any family of subsets of X, and if p is a g-isolated point of A, for each a € I, then p is
g-isolated in N,e Ag-
Proof. (1) Let p be a g-isolated point of A; for each i€ {1,...,n}. Then, for each i there exists
G; € GOX) such that {p} =4;nG;. IfG =N}, G;, then G € GOX) and {p} = (U, 4)NG,sopisa
g-isolated point of UL, 4;, as required.
(2) Clearly, if {p} = (Uges 4a) N G for some G € GO(X), then {p} = A, N G for some «a, € I.
(3) For each a € I, since p is a g-isolated point of 4,, there exists G, € GO(X) such that {p} = 4, N G,.
Thus, {p} = (Nge; Ax) N G* for some G* € {G,}ger-
Observation 4. Lemma 2 (1) does not necessarily hold for an infinite collection of subsets of X, as
illustrated in the next example.
Example 1. Let us consider the collection {[0,1 — %] U {1}}m 1in the space R. Then 1 is a g-isolated
point of the set [0,1 — i] U {1} for each m € N. However, U _;[0,1 — %] u{1} =1[0,1] and 1l is not a g-
isolated point of [0,1].
Observation 5. The example below illustrates that the converse of Lemma 2 (3) does not necessarily
hold.
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Example 2. Consider X ={2,4,5,6} andt = {¢, X,{2,5,6},{4,5,6},{5,6}}. If A= {2,4}, then 4 is a g-
isolated point of A. But A = {2,4,5} n {2,4,6} and 4 is not a g-isolated point of either {2,4,5} or {2,4,6}.
Theorem 2. (1) Let A,, 4, € X, then

() Ig(A1) N 1g(Az) € [;(A; N A,)

(i) Ig(A1 U A3) € 1;(A1) U Ig(A;)
@1, (Ig(A)) = I,(A) for each 4 € X
Proof. The proofs of (i) and (ii) follow directly from Lemma 2, while the proof of (2) is straightforward.
Theorem 3. If B € X has no g-isolated points, then B9 also has no g-isolated points.
Proof. Assume that B9 has a g-isolated point p, then {p} = B9 n G for some G € GO(X). Since p € BY
and G is g-open with p € G, then from Lemma 1 author has BN G # ¢. Since BN G € B9 n G = {p},
author has B n G = {p}, and hence B has a g-isolated point p.

From Definition 5, author can restate the definition of a g-isolated point of a space as follows.
Definition 6. A point p € X is g-isolated in X if {p} € GO(X).
Observation 6. Clearly, if p € 1,(X) then p € I,(4) for any A € X containing p.
Example 3. Let X ={1,3,57} andt = {¢,X,{1,5}, {3,7}}, then GO(X) = P(X), the power set of X.
Therefore, every point in X is g-isolated.
Theorem 4. A pointp € X is g-isolated in X if and only if either {p} is open or {p} is neither open nor
closed in X.
Proof. Clearly, if {p} is open then p € I,(X). If {p} is neither open nor closed, then by Theorem 1,
X\{p} € GC(X), and hence {p} € GO(X); so p € I,(X). Conversely, if the condition above does not hold,
then {p} is closed and not open, which implies that X\{p} is open and not closed. In this case, the
closure of X\{p} is X, which is not contained in the open set X\{p}, and this means that X\{p} € GC(X).
Therefore, {p} & GO(X), and hence p & I,(X).
Corollary 1. p € I,(X) if and only if either {p} is not closed or {p} is clepen in X.
Corollary 2. Let {X; }-., be a family of topological spaces. If b; is a g-isolated point of X; for each i, then
(by, ..., by) is a g-isolated point of the product space []-, X;.
Proof. Suppose that (by, ..., b,) is not a g-isolated point in the space []-,X;, then Theorem 4 implies
that the set {(b,, ..., b,)} is closed and not open. Since {(b,, ..., b,)} is closed, author have:
"y (b} = {(by, ., b)Y=((By, -, b)Y = 121 {B],

and hence each {b;} is a closed subset of X;. Since {(b,,..,b,)} is not open, then there exists
J € {1,...,n} such that {b;} is not open in X;. Therefore, {b;} is closed and not open in X;, so b; is not
g-isolated in X;.
Observation 7. The converse of Corollary 2 does not hold in general; author illustrates this by the
following example.
Example 4. Suppose (X;,7) and (X,,t") are topological spaces, where X; ={1,2}, = {¢, X;},
X, ={7,9}, and t' = {¢, X,,{7}}. The point (1,9) is g-isolated in X; x X,, whereas 9 is not g-isolated in
X,.
Theorem 5. Suppose that h: X; — X, is a continuous and open injection. If p is a g-isolated point in X;,
then its image h(p) is g-isolated in X,.
Proof. If h(p) is not g-isolated in X,, then from Theorem 4, {h(p)} is closed and not open in X,. Since
h is continuous and open, {p} is closed and not open in X;, so p is not a g-isolated point in X;.
Definition 7. A space X is called generalized scattered (briefly, g-scattered) if every nonempty subset
of X has a g-isolated point.
Example 5. The indiscrete space is g-scattered, whereas the space R is not.
Observation 8. Every scattered space is g-scattered but not conversely, as shown by:
Example 6. Let X = {2,4,7,10} and 7 = {¢, X, {2,10},{4,7}}. The space X is not scattered since {2,10}
has no isolated points. However, X is g-scattered since GO(X) = P(X).
Theorem 6. If X is a finite topological space then X is g-scattered.
Proof. Let ¢ # A< X. If AnI;(X) # ¢, then there exists p € A N I;(X), and by Observation 6, p € I,(4).
If AnI,(X) = ¢, then, according to Theorem 4 and Observation 1, for each q € A, A\{q} is a closed set
in X. Choose b € A and define H = (A\{b}), then H € GO(X) and AN H = {b}, s0 b € I;(A). Thus, in
both cases, A4 has a g-isolated point.
Theorem 7. Suppose that his a g-irresolute bijection from a space X; onto a g-scattered space X,,
then X, is also a g-scattered space.
Proof. Let ¢ # A € X,. Then h(A) has a g-isolated point p, so h(4) N G = {p} for some G € GO(X,),
which implies that A n h=1(G) = {h~1(p)}. Since h is g-irresolute, then h~1(G) € GO(X;). Hence, h™1(p)
is a g-isolated point of A.
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3. Generalized Perfect Sets

Author begins by providing the definition and properties of generalized perfect spaces, followed by
a study of perfect sets.
Definition 8. A space X is called generalized perfect (briefly, g-perfect) if it has no g-isolated points;
thatis, I,(X) = ¢.
Example 7. All infinite cofinite spaces are g-perfect.
Observation 9. If X is g-perfect then X is perfect, but not conversely. For example, any indiscrete space
X with |X| > 1 is perfect but not g-perfect.
Theorem 8. A space X is g-perfect if and only if every singleton {p} in X is closed and not open.
Proof. This follows immediately from Theorem 4.
Corollary 3. Every g-perfect space is both a T,- space and a T:-space.

2
Observation 10. Clearly, the converse of the above corollary is generally false; for example, any infinite
discrete space is a T, - space but not g-perfect.
Theorem 9. Any nonempty g-perfect space is infinite.
Proof. This result follows directly from Theorem 6.
It was shown in [7] that the cofinite topology on an infinite set X is the smallest topology that makes X
a T,-space, known as the minimal T; topology. Therefore, from Corollary 3 and Example 7, the following
result follows.
Theorem 10. Suppose t is the cofinite topology on an infinite set X. If ' c 7, then (X,7") is not a
g-perfect space. That is, 7 is the minimal topology for which X is g-perfect.
Theorem 11. Let E € X be an open set. If X is a g-perfect space then the subspace E is g-perfect.
Proof. Suppose, for a contradiction, that E is not a g-perfect space, then E has a g-isolated point p. By
Corollary 3, X is a T,-space, which implies that E is also a T;-space. Thus, from Theorem 4, {p} is clopen
in E. Since E is open, the singleton {p} must also be open in X, which contradicts the assumption that
X is g-perfect.
Observation 11. If E < X is closed, then the subspace E need not be g-perfect. For example, if E # ¢
is a finite subset of an infinite cofinite space X, then E is closed in X and is discrete as a subspace.
Therefore, E is not a g-perfect subspace.
Definition 9. Aset E € X is called generalized perfect (briefly, g-perfect) if itis g-closed and I,(E) = ¢.
Example 8. Let X = RU {s}, where s ¢ R, and define a topology 7 on X by:
t={UcX:U=¢orU=VU{s},VisopeninR}.

Then R is a g-perfect set in X.
Observation 12. According to Theorem 3, a space is g-scattered if it contains no nonempty g-perfect
subsets.
Theorem 12. If {4;}1-, is a finite family of g-perfect sets in X, then U], 4; is also g-perfect.
Proof. It follows directly from Observation 1 and Lemma 2 (2).
Observation 13. According to Observation 1 (3), for a family {4;}-, of g-perfect sets in X, Ni=; 4; is not
necessarily g-perfect.
Theorem 13. If B € X is a g-perfect setand E < B is clepenin X, then E is also a g-perfect set.
Proof. Suppose, for a contradiction, that E is not a g-perfect set, so E has a g-isolated point p, which
means that there exists G € GO(X) with E n G = {p}. Since E is open, then {p} € GO(X). By Observation
6, it follows that p € I,(B), which contradicts the assumption that B is g-perfect.
Theorem 14. Let E < X be clepen in X. Then X is a g-perfect space if and only if both E and E€ are g-
perfect sets.
Proof. If X is g-perfect, the proof is a direct consequence of Theorem 13. Conversely, if X is not g-
perfect, then X contains a g-open set {p}. Since either E or E€ contains p, it follows that one of them
is not g-perfect.

The proof of the next result is clear and thus not included here.
Theorem 15. Suppose h: X, — X, is a gc-homeomorphism. If E € X; is a g-perfect set, then f(E) € X,
is also a g-perfect set.
Conclusion

In this research, author has introduced and investigated new concepts in topological spaces based
on Levine’s concept of g-closed sets. The newly defined concepts of g-isolated points and g-perfect
sets provide a new framework for studying various topological structures. Our investigation has shown
the relationships between these generalized concepts and their corresponding classical topological
ones, providing a richer understanding of topological spaces.

Additionally, these concepts can be further developed using other classes of open sets, such as
semi-g-open, regular g-open, and regular semi-open sets, which offer possible directions for
establishing new generalized structures.
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Moreover, these generalized notions allow for possible extensions into other domains within
topology such as bitopological spaces and supra topological spaces. These extensions could lead to
further theoretical developments. Overall, this work provides the foundation for a more generalized
framework for studying structural properties in topological spaces.
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