

Afro-Asian Journal of Scientific Research
(AAJSR)

 (AAJSR) العلميالمجلة الأفروآسيوية للبحث
E-ISSN: 2959-6505

Volume 1, Issue 3, July-September 2023, Page No: 204-214
Website: https://www.aajsr.com

SJIFactor 2023: 3.908 ISI 2023: 0.337

204 | Afro-Asian Journal of Scientific Research (AAJSR)

Mobile Agent Systems: Execution Code on a Mobile Agent
vs Execution Code on a Stationary Agent

Atiya Alsnousi Ahmida1*, Saad B. Mathe2

1,2 Department of Computer Technology, Faculty of Technical Sciences, Sebha,
Libya

*Corresponding author: atiya-auhida@ctss.edu.ly

Received: July 14, 2023 Accepted: August 19, 2023 Published: August 31, 2023

Abstract:
While many researchers investigated the merits of the mobile agent paradigm over the conventional
methods like Client/Server and Code on demand, very few provided insight into the software agents
community itself. Such an insight is provided in this paper. Within the context of the software agents,
two categories can be identified: stationary agents that execute only on the system where they begin
execution (Home) and mobile Agents that are not bound to the system where they begin execution. A
mobile agent is first residing on a home machine, and it is dispatched to a remote host for execution.
Like any other computer program, a software agent needs code to execute. This code could be installed
on the stationary agent at the server side or it could be pre-imbued to the mobile agent from the client
side. The placement of the execution code is the main objective of this paper. Using Aglet Software
Development kit (ASDK) two states are studied, first where the execution code is pre-imbued into the
mobile agent and second where the execution code is preinstalled on the remote server and
manipulated by the stationary agent on that server. In terms of performance, the single mobile agent is
compared to a stationary agent, and multiple mobile agents are compared to a stationary agent.

Keywords: Mobile Agent 1, Stationary Agent 2, Software Agent 3 Execute Code, 4 ASDK 5

Cite this article as: A. A. Ahmida, S. B. Mathe2, “Mobile Agent Systems: Execution Code on a Mobile
Agent vs Execution Code on a Stationary Agent,” Afro-Asian Journal of Scientific Research (AAJSR),
vol. 1, no. 3, pp. 204–214, July-September 2023.

Publisher’s Note: The African Academy
of Advanced Studies – AAAS stays
neutral with regard to jurisdictional claims
in published maps and institutional
affiliations.

Copyright: © 2023 by the authors. Licensee
The Afro-Asian Journal of Scientific
Research (AAJSR). This article is an open-

access article distributed under the terms and conditions of
the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

 مقارنة مع علي الوكيل المتحرك التنفيذ الشيفرة: نظام الوكيل المتحرك
على الوكيل الثابت التنفيذ الشيفرة

 2سعد يشير ماضي، *1عطية السنوسي أحميدة

 قسم تقنيات الحاسوب، كلية العلوم التقنية، سبها، ليبيا 1،2
 الملخص

المتنقل النموذج في مزايا هذا يحققون software agent paradigm أن العديد من الباحثين في نموذج الوكيل البرمجي
 وكذلك ،Code On Demandالطلب وشفير عند Client/Serverمقارنة بالأليات التقليدية مثل العميل / الخادم

، قليل منهم أبدي اهتمام بما في داخل نظام الوكيل البرمجي PVM Parallel Virtual Machinنظام التوازي المعروف
Software Agent System نفسه. هده الورقة تقدم نظرة من داخل سياق وكلاء البرمجياتSoftware Agent

https://www.aajsr.com/
mailto:atiya-auhida@ctss.edu.ly

205 | Afro-Asian Journal of Scientific Research (AAJSR)

Community ، يمكن تحديد فئتين: العوامل الثابتالتيStationary Agents هي البرمجيات التي يتم تنفيذ مهامها
 . mobile Agentsأما الفئة الثانية فهي الوكيل المتنقل ،(Homeفقط على النظام التي أنشئت عليها وتسمي)

 Homeوهذا النوع غير مقيد بالنظام أو الأجهزة التي أنشاء عليها وهو يعمل على شبكة واسعة من الأجهزة المضيفة
Machine بعيد لتنفيذ عمليات معينة مثل أي برنامج كمبيوتر آخر، يحتاج الإلى مضيف ويتم إرساله. وهو برنامج ينشأ

يمكن تثبيت هذا الشيفرة أو الرمز على الوكيل الثابت في جهاز المضيف حيث المهام. هده وكيل الي شفيرة برمجية لتنفيذال
إن وضع الشيفرة أو رمز التنفيذ هو الهدف الرئيسي لهذه .أو يمكن تثبيته مسبقًا ضمن الوكيل المتحرك من جانب العميل

 الورقة: يتم دراستها في هده حالتان Agent Software Development Kit (ASDK) باستخدامالورقة البحثية
 الأجهزة المضيفة على ومعالجتهتشغيلها ويتمالحالة الولي عندما تكون شفيرة التنفيذ مشحونة مسبقًا ضمن الوكيل المتنقل

الثانية حيث يتم تثبيت شيفرة التنفيذ مسبقًا على الوكيل الثابت في جهاز والحالةبواسطة الوكيل الثابت على ذلك المضيف
المقارنة تتم فقط.الجهاز المضيف علي النتائج ويتحصل ذلك الجهاز المضيف ويتم معالجته بواسطة الوكيل الثابت على

تتم مقارنة وكيل متحرك واحد بوكيل وفي زمن تنفيذ المهام من حيث الأداء، متمثلاً performance الأداءهنا من حيث
 المتنقلين بوكيل ثابت.ثابت، وتتم مقارنة العديد من الوكلاء

 .حزمة تطوير البرمجيات ،التنفيذ الشيفرة ،وكلاء البرمجيات ،الوكيل الثابت المتنقل،الوكيل :الكلمات المفتاحية

Introduction

History of code mobility
Code mobility is not a new concept. It has its origins in the 1960s when the Job Control Language (JCL)
[1]. was used in the optimization of networked computers, enabling minicomputers to submit batch jobs
to mainframes using a remote entry system (RES) [2]. Another direct approach to code mobility is the
RSH (Remote Shell) command that was introduced by 4.2BSD UNIX in 1984 [3]. It allows a user to
send a shell script to a remote machine where it will be executed with access to all the local resources
of the remote machine, (such as a printer or data on the local disk of the remote machine).

A rather prominent and successful example for the use of mobile code is SQL, the structured query
language [5], which was originally conceived in the late 1970s. Even though the mobility of a particular
query was not in the center of the design of SQL, but rather the declarative, high-level, application
neutral formulation of a query, the compact representation of the interpreted language makes it very
easy to package a query into a message, send it to a DB server, where it is interpreted with complete
access to all the resources of the DB server. Thus, it can perform a task on the large amounts of data
in the DB and return the (usually) small result of the query to the user.

A major obstacle for truly mobile code that can potentially be executed everywhere, is the heterogeneity
of the possible execution environments (hardware, operating system, and installed software). This has
led to the development of scripting languages that were conceived to overcome these problems, such
as Perl [4]. Tcl [5]. These scripting languages are executed in the context of a runtime system that
interprets the commands of the scripting language. Since the runtime system itself is software, it can
be ported to any suitable hardware platform, which can then execute mobile code of the corresponding
scripting language, thus providing a homogeneous execution environment for the programs coded in
the scripting language. All of these scripting languages have to some extent been augmented with
mobile code facilities (agent Perl [8], Agent Tcl [6]. etc.). The most recent contenders in the area of
mobile code systems are Telescript3 [7] and Java.

Java was originally conceived as an interpreted, architecture-neutral, portable language. However, it
was soon discovered that these properties made it into a suitable language for automatically
downloadable programs on the World Wide Web. With the integration of the Java virtual machine into
the Netscape Navigator in October 1995 it became the first widely deployed system for mobile code. A
considerable number of systems try to leverage the code mobility of Java into a full-fledged mobile
agent system, such as Aglets, Grasshopper, Mole, Odyssey, Voyager, and many others [8].

Mobile agent paradigm.
Over the conventional methods Software agents further evolve by two more elements: one is client
customization; the other is further assembling of the software modules into a self-contained entity. This
is different from the conventional approaches, where the software modules are maintained on the server
side, and are kept as functions or objects in loosely coupled settings. Software Agents are programs,
typically written in script languages, enabled with certain properties to work on behalf of human users
in a distributed heterogeneous environment. Software Agents can be either stationary Agents that
execute only on the system where they begin execution (Home) or mobile Agents that are not bound to
the system where they begin execution. A mobile agent is firstly residing on a home machine, and it is

206 | Afro-Asian Journal of Scientific Research (AAJSR)

dispatched to a remote host for execution. The accommodating host would provide suitable runtime
environment for the piece of software, the mobile agent, to execute. The mobile agent would execute,
collect host-specific information, and generate runtime states and variables ready to migrate to the
second host in the itinerary. This process continues until the Mobile Agent returns home with useful
information from the last host in the itinerary.

The aglet models.
Major existing paradigms for building distributed applications can be classified into two groups.
Examples of the first class include traditional RPC and most recently its object cousins RMI and
COBRA. For this class of paradigms, the functionality of applications is partitioned among participating
nodes. Different participants use message-passing to coordinate distributed computation. Computation
itself is partitioned; participants exchange intermediate results and other synchronization information.
For the second class of paradigms, computation is migrated toward resources. This type of paradigm
is especially useful for applications requesting immediate reactions to incoming streams of real-time
data and distributed applications that are very tightly coupled. In this project, we experiment with one
such paradigm—It is the Aglet model. Aglet is the shorthand for agent plus applet. It provides us an
infrastructure for building second-class distributed applications.

 There are at least three ways to view the role of aglet technology:

• As a communication mechanism

• As a data transport vehicle among hosts

• As a framework for partitioning application functionality

Paper contribution and Objective
The primary goal of this paper is to deliver a measurable performance comparison between a mobile
agent and a stationary agent. In order to verify this goal, three applications have been chosen as an
arena for this comparison: matrix multiplication, remote document retrieval and remote archive update.
The execution time is set to be the determinant.

• Matrix multiplication operation: In this application, there are two matrices the elements of the two
of them are at the server side. The elements of matrix one has to be retrieved from their respective
file and then the elements of matrix two have to be retrieved from their respective file as well then
on the remote server the process of multiplying them would be executed finally the result to be send
back to the originator on the client machine.

• Remote document retrieval: in this application there is a document held by the server and
requested to be on the client machine. So, the task here is to retrieve the document and present
it on the client machine.

• Archive update: In this application there are scattered pieces of information in different files on the
remote server. The task is to accumulate them in a particular file named as an Archive file

The comparison falls into two categories:

• Single mobile agent to a stationary agent.

• Multiple mobile agents to a stationary agent.

Single mobile Agent to a stationary agent.
In this context, a single code-holding mobile agent is compared to a code-holding stationary agent. The
point of comparison is the time required by any of them to accomplish a set of tasks. In order to do so,
an aglet mobile and stationary version are constructed. The mobile version is created on the client
machine and dispatched to the remote server by another stationary agent on that machine. The
stationary version is activated on the remote host.

• Execution code on the mobile agent.
 In this case, all codes necessary to execute the tasks on the remote server are put on the mobile agent.
Upon arriving at the destination, the incoming Agent will start carrying out the execution of the tasks.
The time required to execute each task and the total execution time is measured for the mobile version.
Upon finishing the mobile agent would send the results back to the master agent on the client machine.

207 | Afro-Asian Journal of Scientific Research (AAJSR)

• Execution code on the Stationary agent.
In this case, all codes necessary to execute the tasks on the remote server are held by the stationary
agent. Upon arriving at the destination, the mobile Agent would send requests for services to the
stationary agent. The stationary agent would receive and process the requests of the visitor and give
back the results of execution to the mobile agent which resides on the same server then the mobile
agent would send the results to the originator on the client machine. The time required to execute each
task and the total execution time is measured for the stationary version.

Multiple-mobile agents to a stationary agent.
In this context, multiple code-holding mobile agents are compared to a code-holding stationary agent.
The point of comparison is the time required to accomplish a set of tasks brought by the almost
concurrently arriving mobile agents in other words examining how capable a code-holding stationary
agent of executing multiple tasks against multiple code-holding mobile agents operating on the same
server simultaneously. In order to do so, multiple mobile agents would be created and simultaneously
dispatched to the remote host. On the other hand; a stationary agent would be activated on the remote
host.

• Execution code on the mobile agents.
 In this case, all codes necessary to execute the tasks on the remote server are put on the mobile
agents. Each mobile agent would be assigned a particular task. Upon arriving at the destination, the
incoming Agents would start executing their tasks individually and simultaneously on the remote host.
The time required to execute each task is measured individually for mobile agents. Upon finishing
mobile agents would separately send the results to their respective originators.

• Execution code on the Stationary agent.
In this case, all codes necessary to execute the tasks on the remote server are put on the stationary
agent. Each mobile agent would be assigned a request for a particular service from the stationary agent.
Upon arriving at the destination mobile Agents would send requests for services to the stationary agent.
The stationary agent synchronously would receive and process the requests of the visitors and send
the execution results back to them then mobile agents would send the results to their respective
originators. The time required to get the service accomplished is measured for each mobile agent.

Implementation results and discussions.

Implementation infrastructure.
The experiments were conducted on a wide area network infrastructure (internet), and two servers were
deployed. One was attached to the Jarring Internet Access provider. The other one was attached to
TMnet Internet Access provider.

Hardware components:
 The basic hardware components consisted of two PCs with the following features:

• Pentium III Processor (733 MHz)

• 128 Mb RAM

• Internet Access

 Software components:
 The basic software components consisted of the following elements:

Table1: Software basic components

SN. Software Version

1
Windows Operating

System
Win98

SE

2
Java development kit

(JDK)
1.1.8

3
Aglet Software

Development kit
(ASDK)

1.1.0

Implementation results.

General description.
As it has already been mentioned in the previous chapter three operations would be conducted in
different sizes. Table 2 shows the details of the operations.

208 | Afro-Asian Journal of Scientific Research (AAJSR)

Table 2: Operations description.

No. Operation Size

1. Matrix multiplication1 120(columns) x 120(rows)

2. File contents1 250 KB data

3. File copy1 800 KB data

4 Matrix multiplication2 100(columns) x 100(rows)

5 File contents2 210 KB data

6 File copy2 600 KB data

7 Matrix multiplication3 80(columns) x 80(rows)

8 File contents3 160 KB data

9 File copy3 400 data

10 Matrix multiplication4 70(columns) x 70(rows)

The reason why each operation is conducted in different sizes is to examine whether the size of the
operation has an impact on the performance of any of the competitors.

Throughout this part, each operation is denoted with its serial number as appears in Table 2. Time in
all cases is measured in milliseconds.

A Single Mobile agent vs a Stationary agent.
In this category, there was a single mobile agent and a stationary agent.
First, a mobile agent without source code was dispatched to the remote host with requests for services
from the stationary agent on the remote host. Upon arriving, the mobile agent submitted the requests
to the stationary agent. The stationary agent accessed the data sources and carried out the requested
services (these were retrieving elements of the matrices and multiplying them, reading the document
and updating the archive) then it gave back the final results to the mobile agent. The mobile agent in
this case neither bore source code nor had access to the data source on the remote host.
Second, a mobile agent with source code was dispatched to the remote host. The Mobile agent
accessed the data source and carried out the execution. The stationary agent in this case neither bore
a source code nor accessed the data source on the remote host .

The main purpose here was to see which nimbler to execute the operations. That was determined by
the time measured for each of them .

After conducting a series of trials, the average time for both the stationary agent and the mobile agent
is presented in Table 3.

Table 3: Mobile & Stationary Real Time

Operations

Sequence

Stationary

Time

Mobile Time

Operation 1 52262 54974

Operation 2 13738 15803

Operation 3 42231 42533

Operation 4 23976 23832

Operation 5 10214 11634

Operation 6 31343 32582

Operation 7 8650 9034

Operation 8 7717 7965

Operation 9 21405 21377

Operation 10 5037 4943

Total Time 216573 224677

209 | Afro-Asian Journal of Scientific Research (AAJSR)

The results of Table 3 are charted in figures (1 and 2):

Figure 1: A single Mobile agent vs a stationary agent (individual operations).

Figure 2: A single mobile agent VS A stationary agent (Total Time).

From figure_2 it could be seen that the stationary version was slightly swifter than the Mobile one in
executing the tasks. This apparent difference may disappear in real-life applications when a steady
state is reached. Table_ 3 shows that the stationary agent was nimbler than the Mobile agent in
operations one and seven where both of them are matrix multiplication but the mobile agent was nimbler
in operations four and ten both of them are matrix multiplications as well .in all remote document retrieval
operations (two, five, eight) the Stationary version was a bit nimbler but this may not sustain when a
steady state is reached. For archive update operations (three, six, nine) the stationary version was
nimbler in operations three and six but it wasn’t in operation nine.

 In effect, this category can be concluded by saying that the execution time by both the stationary agent
and the mobile agent in applications like the ones that have been presented here is more or less the
same when a steady state is reached.

Multiple Mobile agents VS A Stationary agent.

In this category, there were multiple Mobile agents and a Stationary agent.

 First, mobile agents without source code were dispatched to the remote host with requests for services
from the stationary agent on the remote host. Upon almost concurrent arrival the Mobile agents
submitted the requests to the stationary agent. The stationary agent accessed the data sources and

A single mobile agent VS A stationary

agent

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Operations

T
im

e
in

 m
ill

is
ec

on
ds

stationary mobile

10000

30000

50000

70000

90000

110000

130000

150000

170000

190000

210000

230000

250000

stationary mobile

T
im

e
 (

in
 m

il
li
s

e
c

o
n

d
s

A Single Mobile VS A Stationary Agent
(Total Time)

210 | Afro-Asian Journal of Scientific Research (AAJSR)

carried out the requested services (these were retrieving elements of the matrices and multiplying them,
reading the documents and updating the archive) then it gave back the final results to the mobile agents.
Mobile agents in this case neither bore source codes nor had access to the data source on the remote
host. The Stationary agent carried the tasks in sequential manner and mobile agents had to wait for
each other.

Second, multiple mobile agents with source code were dispatched to the remote host. Upon almost
concurrent arrival they accessed the data sources and carried out the execution. The Stationary agent
in this case neither bore source code nor accessed the data sources on the remote host. Mobile agents
operate simultaneously and no shared data sources that could impose waiting time.

The main purpose here is to see which mode was faster in executing the operations, is that when the
execution was carried out sequentially by the Stationary agent or when it being carried simultaneously
by the visitors. That was determined by the time measured for each mode.

• Code on A stationary agent.
 In this case, the assumption was that the mobile agents had concurrently arrived at the remote host
each one had brought a request in the same order presented in Table_ 2. So, the stationary agent
carried the requests sequentially as appears in Table_2. Agent one that carried matrix multiplication1
didn’t have to wait and it would get its service in real time but the rest of the mobile agents did have to
wait. When the stationary agent finishes the first service it will carry out the second one. So, the time
required to accomplish the second service would be the time required to accomplish the first one and
the real time needed to accomplish the second one from mobile two’s perspective. For the second agent
that carried operation two (remote document retrieval) the de facto time was operation one real time
and operation two real time. Operation one time for the second mobile agent was the waiting time for
that agent. The third mobile agent had to wait for the first mobile and second mobile. So, the third agent
underwent waiting time which was the time required to execute operations one and two. This waiting
time propagated linearly throughout the set of mobile agents waiting for accommodation

From Table 3, Table 4 has been constructed as the following:

Table 4: De facto Time

Operations
Sequence

De facto Time

Operation 1 52262

Operation 2 66000

Operation 3 108231

Operation 4 132207

Operation 5 142421

Operation 6 173764

Operation 7 182414

Operation 8 190131

Operation 9 211536

Operation 10 216573

Table 4 presents the de facto time that includes the real-time and waiting time. From table 3 (real time),
the pure real time required to accomplish each operation by the stationary version could be obtained.
So, if the stationary agent was able to carry out the operations in parallel mode it might be able to get
the real time for each operation. However, the stationary agent lacks this ability.

211 | Afro-Asian Journal of Scientific Research (AAJSR)

The purpose here is to compare the real time presented in Table 3 to the de facto time presented in
table 4.

Figure 3: Real Time VS De facto Time.

Figure 3 presents how affected the mobile agents with the waiting time. For example, agent ten that
carried operation ten had to wait for a time that required for accomplishing all operations from one
through nine spite its real time was the shortest one.

• Code on multiple Mobile agents.
In this case, the assumption was that the mobile agents had concurrently arrived at the remote host
each one had brought a request in the same order presented in Table 3. The source code had been
carried along by the mobile agents. There was no dependency between agents in accessing the data
sources. In other words, each mobile agent had its own data source on that remote host. So, a mobile
agent didn’t have to wait for anything. No waiting time at all. Mobile agents were operating
simultaneously on the remote host.

After a series of trials on operations that are presented in Table 3 the following results have
been obtained

Table 5: Competitiveness Time

Operations
Sequence

Competitiveness
Time

Operation 1 204378

Operation 2 82926

Operation 3 208234

Operation 4 141388

Operation 5 72404

Operation 6 187260

Operation 7 81200

Operation 8 64870

Operation 9 148058

Operation 10 50566

Table 5 reveals that despite being operating in parallel mode and with no dependencies between Mobile
agents or waiting time, operations couldn’t be accomplished in real time as appears in table 3. In effect,
when multiple agents are operating on the same platform, they compete with each other on the

Real Time VS De facto time

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

1 2 3 4 5 6 7 8 9 10

operations

T
im

e(
m

ill
is

ec
o

n
d

s

De facto time real time

212 | Afro-Asian Journal of Scientific Research (AAJSR)

operating system resources. With Single agent operating on a platform all operating system resources
are devoted to that single agent. But in the case of multiple agents operating on the same machine
simultaneously, operating system resources are shared by all of them. the competition on the sources
here affects the execution and accomplishing time. Time required to accomplish a task in this mode
was denoted as competitiveness time. The purpose here was to compare the real time presented in
Table_3 to competitiveness time presented in table_5.

Figure 4: Real Time VS Competitiveness Time.

Figure_4 shows that the competitiveness time doesn’t grow in a linear manner as waiting time. In effect,
competitiveness time depends highly on real time. A proportion can be set between the real time and
competitiveness time. As high the real time as high the competitiveness time will be, where waiting (de
facto) time grows linearly without any relation to the real time.

Figure 5 depicts the relationship between Real Time, Competitiveness Time and Waiting Time.

Figure 5: Real time & Competitiveness Time& Waiting Time.

This category could be concluded by saying that when the source code is held by the stationary agent,
the visitors have to queue and wait for each other. Mobile agents with long-serving time operations and
others with short-serving time operations are treated alike. With reference to table 3 Mobile agent that
carries operation ten has to wait until the nine previous agents are served. Despite being the shortest
serving time operation, Agent Ten undergoes waiting time which is the time required to accomplish all
previous nine operations. In effect, this mode may be undesirable in real life applications where there
is an infested platform. On the other hand, when the source code is held by the Mobile agents, they still

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000

1 2 3 4 5 6 7 8 9 10

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

operations

Real Time VS Competitiveness time

Real Time

Real Time & Competitiveness Time & Waiting

Time

0

20000

40000

60000

80000

100000
120000

140000

160000

180000

200000

220000

240000

1 2 3 4 5 6 7 8 9 10

Operations

T
im

e
in

 m
ill

is
ec

on
ds

Real T ime Competitiveness T ime Waiting T ime

213 | Afro-Asian Journal of Scientific Research (AAJSR)

cannot accomplish their tasks in real time presented in table 3 that results from the competition between
agents on the operating system resources, but with this mode agents do not have to wait for each other
rather they compete each other and agents with short execution time operations can accomplish their
tasks earlier than those with long execution time operations.

Future work
For security reasons, it’s very desirable that the visiting mobile agents being kept away from accessing
the data sources on the remote host. So, with this desire all operations on the remote host should be
carried out by the stationary agent and the visiting agents being accommodated by the stationary agent

With reference to the methodology and implementation of this study it was clear that:

When there was a single mobile agent being accommodated by a stationary agent there was no
difference in the performance between both of them and this desire could be easily fulfilled

The other category is when there are multiple agents operating concurrently on the same host. It was
shown that when the execution being carried out by the stationary agent mobile agents have to wait for
a long time before being accommodated because the stationary agent cannot operate in parallel it has
to accomplish the requested tasks in a sequential manner (first-requested first-served). It was also seen
that when the execution was being conducted by the visiting agents there was a competition on the
operating system that has some impact on the performance.

With reference to figure_5 it could be seen that the competitiveness time is more acceptable than the
waiting time. But once again no security can be guaranteed with multiple agents accessing the data
sources on the remote host. So, the idea that when the source code is placed on the stationary agent
the sluggishness of the execution, which results from the waiting time, is highly affects the performance,
on the other hand when the source code is imbued into the mobile agents and those mobile agents
have access to the data sources on the remote host security not guaranteed any more. Then if the
problem of waiting time could be solved and the data sources be maintained on the remote host to be
accessed only by the host side then the local sources may be saved from being corrupted by malicious
mobile agents, meanwhile, the desired performance is still maintained.

The proposal here is that a master stationary agent should be maintained that receives requests from
incoming visitors. When the master stationary is willing to serve a visitor, the Worker agent will be
spawned by the master stationary agent to carry out that particular request for that particular visitor.

So, First, the visiting agents send their requests to the Master stationary agent. Once the master
stationary agrees to accommodate the visiting agent, Worker agent will be spawned by the stationary
agent. The Worker will inherit all necessary information from the master stationary including the identity
of the visiting agent. Once the Worker finishes the process it forwards the results to the visiting agent
and disposes itself.

 Once this proposal is set then the results of its execution would be compared to that one presented in
Table 4 (code on multiple mobile agents). In other words, the comparison would be between multiple
mobile agents with source code and multiple stationary agents with source code this assessment will
be in terms of execution time.

Conclusion
There are several conclusions that can be derived from this study:

• The results have shown that with a single mobile agent to a stationary agent, the performance is
almost the same in applications similar to those that have been studied here.

• Multiple mobile agents accommodated by a stationary agent undergo waiting time that grows in a
linear manner without discrimination between small operations and big operations.

• The results have also revealed that when multiple agents operate on the same machine
simultaneously, they compete with each other on the operating system resources. This competition
thwarts mobile agents from having their tasks finished in real time.

• Moreover, the results revealed that where the waiting time grows linearly, competition time could vary
in the real time. For this reason, competition time may be favored over waiting time in real life
applications as it discriminates between small operations and big operations.

• The first perspective of continuation for this work is in the development and evaluation of spawning
Stationary agents to overcome security concerns.

214 | Afro-Asian Journal of Scientific Research (AAJSR)

References
[1] M. Shaw, “Myths and mythconceptions: What does it mean to be a programming language,

anyhow?,” Proc. ACM Program. Lang., vol. 4, no. HOPL, 2022, doi: 10.1145/3480947.
[2] A. Mämmelä, J. Riekki, and M. Kiviranta, “Loose Coupling: An Invisible Thread in the History of

Technology,” IEEE Access, vol. 11, no. June, pp. 59456–59482, 2023, doi:
10.1109/ACCESS.2023.3284685.

[3] Y. Fu, L. Liu, H. Wang, Y. Cheng, and S. Chen, “SFS: Smart OS Scheduling for Serverless
Functions,” Int. Conf. High Perform. Comput. Networking, Storage Anal. SC, vol. 2022-
November, pp. 1–15, 2022, doi: 10.1109/SC41404.2022.00047.

[4] D. G. Schwartz, Daniel G. Schwartz, “Review of ‘Knowing our world: an artificial intelligence
perspective,’” Georg. F. Luger, Springer, pp. 1–3, 2023.

[5] “Tcl‐Tk for EDA Tool,” in Programming and GUI Fundamentals, Wiley, 2022, pp. 185–210. doi:
10.1002/9781119837442.ch10.

[6] J. Barambones, J. Cano-Benito, I. Sánchez-Rivero, R. Imbert, and F. Richoux, “Multiagent
Systems on Virtual Games: A Systematic Mapping Study,” IEEE Trans. Games, vol. 15, no. 2,
pp. 134–147, Jun. 2023, doi: 10.1109/TG.2022.3214154.

[7] S. Kirrane, “Intelligent software web agents: A gap analysis,” J. Web Semant., vol. 71, p. 100659,
Nov. 2021, doi: 10.1016/j.websem.2021.100659.

[8] P. K. Shukla, A. Aljaedi, P. K. Pareek, A. R. Alharbi, and S. S. Jamal, “AES Based White Box
Cryptography in Digital Signature Verification,” Sensors, vol. 22, no. 23, 2022, doi:
10.3390/s22239444.

[9] A. Shashaj, F. Mastrorilli, M. Stingo, and M. Polito, “An industrial Multi-Agent System (MAS)
platform,” pp. 1–12.

[10] M. Nieke, L. Almstedt, and R. Kapitza, “Edgedancer: Secure Mobile WebAssembly Services on
the Edge,” in Proceedings of the 4th International Workshop on Edge Systems, Analytics and
Networking, New York, NY, USA: ACM, Apr. 2021, pp. 13–18. doi: 10.1145/3434770.3459731.

[11] J. Cao, G. H. Chan, W. Jia, and T. S. Dillon, “Checkpointing and rollback of wide-area distributed
applications using mobile agents,” Proc. - 15th Int. Parallel Distrib. Process. Symp. IPDPS 2001,
vol. 00, no. C, pp. 1–6, 2001, doi: 10.1109/IPDPS.2001.924943.

