Afro-Asian Journal of Scientific Research (AAJSR)
bl Canll & gl 5 81 Alall
E-ISSN: 2959-6505

‘ Volume 3, Issue 4, 2025

AAJSR Page No: 31-40

Website: https://aajsr.com/index.php/aajsr/index ‘
SJIFactor 2024: 5.028 ISI 2025: 0.915 0.76 :2025 (AIF) 2l 80 Jalaa

Rethinking Negative Multiplication: Separating Magnitude
from Direction

Omar Ali Zargelin+
Office of Innovation and Entrepreneurship Projects, Libyan Authority for Scientific
Research, Tripoli, Libya

syl (8 el Juad sl qyall bl sale |

Ll ‘u.ul.\\)ln c‘";‘dzj\ Ganll Al el Jlae Y 334 5 HLSLY) @)\.ﬁm i

*Corresponding author: zargelin@aonsrt.ly

Received: August 02, 2025 | Accepted: October 26, 2025 | Published: November 01, 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

Abstract:

Arithmetic rests on four fundamental operations, yet multiplication with negatives poses interpretational
challenges that addition and subtraction do not. Historically, negative multiplication was introduced to
preserve algebraic consistency and closure, but its tangible, real-world mechanism remains opaque:
identities such as (—a) X b = —(a x b)and (—a) X (—b) = ab are algebraically valid while lacking an
intuitive model that explains how the final sign arises as a realized operation. Building on prior work
that re-read division by zero and division by negatives treating some actions as nonexistent rather than
merely undefined this paper re-examines the legitimacy of negative multiplication as a real operation
rather than a symbolic convention. We adopt a sign—magnitude split during computation with post-hoc
sign restoration and propose a two-model framework. Model | bans direction x direction: squaring a
negative preserve its sign, even roots of negatives are not realized on R, and negative x negative is
not a realized operation. Model Il allows computation with direction preservation when two negatives
meet, defining even roots of negatives as the negative of the positive root on the magnitude. The
framework cleanly separates outcomes that are realized on Rfrom those that are symbolic only
(requiring Cor falling outside the domain), without altering classical algebraic truths. The result is a
principled boundary between symbolic structure and physical meaning, a transparent labeling policy
for instruction, and a coherent pathway to complex analysis when and only when its introduction is
conceptually warranted.

Keywords: Negative Multiplication, Sign—Magnitude Split, Realized Vs Symbolic Only, Even Roots Of

Negatives.
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Introduction

This paper builds directly on our prior study, Rethinking Negative Multiplication: Separating
Magnitude from Direction (Paper 1). There we proposed treating negativity primarily as direction rather
than as a merely signed magnitude and showed how classroom confusion often arises from sliding
sometimes unconsciously between purely symbolic rules and real-world operations. Here we extend
that framework to three focal points: the status of negative x negative, powers of negative numbers
(including non-integer exponents), and even roots of negative numbers. Our aim is not to alter algebraic
validity but to clarify when a result is operationally realized on the real line and when it is symbolic-only,
so instruction and applications can transparently mark the boundary.

Our guiding convention is a sign-magnitude split during computation, followed by controlled sign
restoration. Concretely, we compute on magnitudes in the nonnegative domain while tracking direction
separately; only at the end do we restore the sign according to explicit rules tied to the scenario
(kinematic direction, financial inflow/outflow, charge, etc.). For instance, the standard distributive
understanding of a negative factor across a positive factor remains intact at the level of magnitude, with
the sign handled independently:

aX(=b) = —(axb) (1)

To make the convention precise, we adopt a reusable decomposition for any x € Rinto direction and
magnitude:

x = sgn(x) | x|,sgn(x) €{-1,+1}, |x1=0 (2)

Equations (1) and (2) will be referenced throughout without repetition. Building on Paper 1, we now
formalize a rulebook that distinguishes (i) operations whose realization on negative inputs is well-
grounded in real settings from (ii) operations that are algebraically permissible yet lack a coherent real
mechanism when both operands encode direction i.e., “direction x direction” treated as a realized
operation rather than a symbolic composition. Statements relying on results proved in Paper 1 will be
cited as “Paper 1, Sec. 11,” and only new or refined arguments are proved here.

Pedagogically, this yields two immediate benefits. First, learners carry out calculations on
magnitudes simple, concrete steps while deferring the directional decision to an explicit restoration rule;
this reduces cognitive load and avoids conflating algebraic syntax with physical meaning. Second,
instructors and practitioners gain a principled way to label certain outputs symbolic only whenever the
underlying operation does not correspond to a realizable process in the intended real domain (e.g.,
even roots of negatives on R).

The remainder proceeds as follows. We first state the operational principles and a precise realized
vs. symbolic-only criterion derived from the sign—magnitude convention and context-based restoration.
We then analyze three case families negative x negative, negative bases under non-integer exponents,
and even roots of negatives showing where the model supports realization and where it calls for
symbolic-only tagging. A comparative section contrasts this reading with the classical symbolic
approach, followed by implications for instruction and modeling. We close with open questions and a
roadmap for extending the framework to exponential/logarithmic forms and other composite operations.
Background

This paper builds directly on our prior study, Rethinking Negative Multiplication: Separating
Magnitude from Direction (Paper 1, under review, 2025). Paper 1 distinguished algebraic validity from
the real-world realization of an operation on the real line, showing that much classroom confusion arises
when symbolic rules are over-read as distributive/operational mechanisms once negativity as direction
is involved. Here we briefly review the algebraic facts that matter for negatives, indicate where real
interpretations become nontrivial, and explain how a sign-magnitude split complements rather than
replaces the standard account, preparing a two-model framework that shares the split but makes
different operational choices.
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Field-axiomatically, (—a) x (—b) = abfollows from distributivity and order compatibility; since
(=1) x (—=1) = +1, we obtain (—a) x (—b) = abfor all real a, b. Pedagogically, learners often reinterpret
this as if “a negative time a negative creates positivity,” whereas positivity here is a structural
consequence of the axioms, not a physical mechanism flipping direction. Paper 1 argued that tracking
direction (sign) separately from magnitude, computing on magnitudes, and restoring the sign by an
explicit, context-tied rule reduces such misreadings.

For exponents, standard identities are already delimited when real values exist. For reduced
rationales p/qwith p,q € Z+,,

xP/1 = x? A3)
S0, a negative base yields a real value only when gis odd:
(—a)P/? € Riff g is odd, a > 0 4
and even roots summarize the same restriction:
K=aeR,a>0keZs, (5)

In real only teaching and modeling, expressions falling under (5) or under (4) with even gare typically
shunted to C. Paper 1 recommended explicitly tagging such outcomes symbolic only unless complex-
analytic reading is intended, while keeping all algebraic identities intact.

In sum, the present paper refines rather than replaces the classical account: we retain (3) -(5) but
add a clear use-regime distinguishing realized from symbolic only operations in direction-laden
scenarios. Building on the same split, we later introduce two models: Model | bans direction x direction,
thereby not realizing negative x negative or even roots of negatives on R; Model Il allows computation
with direction preservation when two negatives meet and defines even roots of negatives as the
negative of the positive root on the magnitude, while constraints (3) - (5) for exponents and roots remain
in force.

The Problem in the Classical Model

The classical reading becomes problematic at the point where a symbolic rule is silently promoted
to areal-world operation. Once negativity is treated as direction, pushing sign rules through intermediate
steps as if they were realized operations breeds confusion: squaring is read as an automatic sign flip,
even roots of negatives are sent straight to C, and non-integer powers on negative bases yield outputs
with no presence on R. This gap between algebraic structure and realistic meaning is the focus of this
section, paving the way for a clear operational policy in the sections that follow.

Symbolic Tension
Classical algebra asserts that squaring a negative yield a positive:

(-D? = +1 (6)

Algebraically this is correct; under a direction-based reading it is better seen as a magnitude-only
operation (squaring 1), with direction x direction not treated as a realized step. Equation (6) therefore
records a logical consequence of the algebraic system rather than a physical mechanism that flips
direction (cf. the sign—magnitude split in (2) and the symbolic-only stance in [1]). For even roots of
negatives, the expression is routinely transferred to Cinstead of being declared non-real on R:

V=4 = 2i 7)

This is correct in complex analysis but, on a real-only track, represents a domain extension rather
than a realized operation; hence it is tagged symbolic only unless a complex interpretation is explicitly
intended (see the real-valued restriction in (5) and discussion in [5], [6]). For non-integer exponents on
negative bases, complex outputs arise whenever the reduced fractional exponent has an even
denominator; for instance, 1.9 = 19/10:

(=5)° ~ 26.69 — 9.60i ®)

Equation (4) already warns that (—a)?/9is real only when gis odd. Thus (8) is no algebraic surprise;
pedagogically, in real-only contexts it should be tagged symbolic-only unless branch choices in Care
explicitly adopted ([1], [5], [6])-

Philosophical Tension
Negativity encodes direction, not an independent magnitude. Using the standard decomposition

x =sgn(x) [ x1(2)
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We compute on | x |land restore direction by explicit rules tied to context. Reading (6) as a self-
caused direction change over-interprets what algebra supplies. In a realized, direction-aware
interpretation, direction x direction is not an actual operation; statements like (6) and the general
negative x negative = positive are algebraic consequences of field axioms, not causal mechanisms
generating positivity. We therefore separate algebraic truth from the realizability of direction-laden
operations ([1]). Raising a magnitude with direction should not, on a real only reading, alter direction
unless a sign-restoration rule warrants it. Accordingly, we compute the power on the magnitude and
then consult the restoration rule: if the case falls under the symbolic-only regime on R(as in (7) and (8)),
no new real direction is asserted; the operation is not realized unless we move explicitly to complex
analysis (cf. (3) — (5) and [2 — 6]). This framing prepares the two-model treatment used later: in Model
I, sign compounding is banned and even roots of negatives are not realized on R; in Model Il, sign
restoration may preserve negative direction where specified, while even-denominator or irrational
exponents on negative bases remain out of the real domain.

Principles of the Two Model Framework

The overarching idea is to separate magnitude from direction during computation and to forbid
sign composition as an internal step. We always compute on a positive magnitude and postpone the
sign decision to the end via an explicit policy rule. Within this separation, we introduce two distinct
models: Model I, which bans negative x negative and, as a consequence, does not define the square
root of a negative number on R; and Model II, which allows computation while preserving the
negative direction when two negatives meet, thereby providing a definition of the square root of a
negative number consistent with that policy.
Separating Magnitude from Direction

Every negative input is represented as a positive magnitude with a fixed negative direction during
the computation, and the sign is restored only at the end:

Qsigned = — lal ©)

The prohibition principle states that multiplying/compounding signs is not a valid internal operation;
signs are assigned and restored, not algebraically combined mid-process. This ensures semantic
transparency: numerical work happens on magnitudes only, followed by a sign decision consistent with
the chosen policy.

Model I: Ban on Negative x Negative

In Model |, (—a) x (—b)is disallowed on Rbecause it instantiates direction x direction, which the
prohibition principle forbids. To remain semantically coherent, familiar operations are specialized as
follows:

e Squaring a negative is performed on the magnitude and the input’s direction is restored at the
end:
x? = sgn(x) | xI? (11a)
Hence (—2)? = —4. Squaring is not always positive here; it preserves the input's direction at the
restoration step.
e Even roots of negative numbers are undefined on Rin this model, since an even root would
invert a squaring step that retained direction. For example, v—9is undefined on R.
¢ Non-integer powers with a negative base: (—a)"is undefined on Rforr € Z, a > 0, consistent
with the prohibition principle.
¢ Negative x Negative: (—a) x (—b)is undefined on Rwith a, b > 0. No positive sign is generated
by compounding two negatives.

Because squaring preserves direction under (11a), there is no direction-reversing even root within
the same domain; consequently, the square root of a negative number is not available in Model I.
Model II: Allowed with Negative-Direction Preservation

Model Il keeps magnitude-direction separation but makes a different policy decision when two
negatives meet: the negative direction is preserved. We multiply magnitudes and then restore a
negative sign:

e Squaring a negative follows the same operational template:
x? = sgn(x) | x|? (11b)
Thus (—2)? = —4. Squaring again preserves direction.
e Even roots of negative numbers are defined to be the negative of the root on the magnitude:
V—a=-+a(a>0) (12b)
So V=9 = —3. This is not a return to the classical view; it is a definition chosen to be consistent with
direction preservation in Model II.

34 | Afro-Asian Journal of Scientific Research (AAJSR)



¢ Non-integer powers with a negative base remain undefined on Rfor non-integer exponents,
aligning with the domain policy.

(—a)" undefinedon Rforr e R\ Z,a >0 (13)
e Negative x Negative is executed on magnitudes with a restored negative sign:
(—a) X (=b) = —ab (14)
Thus (—3) x (—4) = —12. The pedagogical aim is to show that multiplication is not a walk on the
number line producing a double flip of direction; rather, it is a magnitude operation whose direction is

determined by the policy.

Table (1): Core examples under (11) - (14): Classical vs. Model | vs. Model II.

Operation Classical Model | (ban: no —x—=; no even roots on R) Model Il (allowed; preserve negative)
(=2)? +4 —4« via (11) —4« via (11)
V=9 3i not realized on R « via (12), (27a) —3« via (12)/(27b)
(=5 complex not realized on R < via (13), (18) not realized on R < via (13), (18)
(=3) x (—-4) +12 not realized < via (14), (23a) —12«< via (14), (23b)

Note: We adopt the sign—magnitude split x = sgn(x) | x [(2); computations run on magnitudes, and the
sign is restored once according to the model’s policy.

Table 1 condenses the paper's core message into a side-by-side view. It shows how the same
operation receives different labels and outputs under the three readings: Classical, Model | (ban: no
direction x direction, no even roots of negatives on R), and Model Il (allowed with direction
preservation). Because all computations run on magnitudes and the sign is restored once at the end,
the table cleanly separates what is realized on R from what is symbolic-only / not realized.
Pedagogically, it gives instructors a quick rubric for grading and discussion, and it helps students see
why results diverge without changing the underlying algebraic identities.

Realistic Interpretation of Roots and Powers

The behavior of roots and non-integer powers depends on the chosen model. Under Model | (ban
on negative x negative), squaring preserves the input’s direction and even roots of negatives are not
realized on R. Under Model Il (allowed with direction preservation), we compute on magnitudes and
restore a negative sign when two negatives meet, which yields a consistent definition of even roots of
negatives.

Even Roots
Model Il (allowed with direction preservation):
Using the magnitude first, restored sign template (11b), we define:

V=a = —+aa>0 (15)
This enforces two-way inverse consistency on all reals:
Vx? =xforallx e R (16)
and generalizes to higher even roots:
N=a = - Na,a>0,kely, a7

Equations (15) — (17) keep computation on magnitudes and restore the negative direction, making
even-root operations on negatives realized within this model without defaulting to C.
Model I (ban):
Since squaring in (11a) preserves the input’s direction, no even root on Rcan invert that step for
negative inputs. Thus:
e J-a is not realized on R, and (16) is read domain-restricted:
{x% = x when x > 0, and not realized when x < 0.
e Equation (17) does not apply to negatives within this model; even roots of negatives remain out
of domain.
Fractional or Non-Integer Powers
In both models we distinguish:
e If r = p/qin lowest terms with odd q, the value on a negative base is realized on Rvia the odd
root on magnitudes combined with integer powers (with sign restoration consistent with each
model). If gis even, the operation is not realized on R:

(—a)P/is realized on R < g is odd; otherwise not realized. (18)
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If r € R\ Zis irrational (or cannot be reduced to p/qwith odd q), powers of a negative base are not
realized on R:

(—a)7 not realized on R, r irrational. (29)

lllustrative example:

(—5)? = not realized on R (20)

Since 1.9 = 19/10has an even denominator, placing it under the second branch of (18).
Consistency notes: In Model Il the negative direction is restored after even-root/magnitude
computations, so (15) - (17) apply. In Model | this restoration is disallowed for even roots, leaving
squaring direction-preserving while no even-root inverse exists for negatives within R.

Partial Model

The partial model restricts core arithmetic to nonnegative magnitudes only and defers all sign
handling to a post-computation restoration step. Multiplication and exponentiation are executed on
magnitudes; signs are restored at the end according to the chosen policy (ban vs. allowed with
preservation).

Sigh magnitude representation (shared):

x = sgn(x) | x|,sgn(x) € {+1,-1}, |x1=0 (21)
Magnitude only multiplication (allowed core):
m; ©® m, = mym,m;,m, =0 (22)

Post multiplication sign restoration (model specific):
¢ Model I (ban on direction x direction):

+m ifs; =5, =+1
Restore(s;,s;;m) = { —m if exactly one of s;,s, equals — 1 (23a)
undef. ifs; =s,=-1
e Model Il (allowed with negative-direction preservation):
+m ifs; =s, =41
Restore(s;,s;;m) = {—m if exactly one of s;,s, equals —1 (23b)
-m ifs; =s,=—-1

Integer powers (unified magnitude-first definition):
Compute m™on magnitudes only, then restore the original input’s sign (no internal sign-
multiplication; no parity-based flipping):

restore
(sm)™® (s, m™) - sm"nez (24)

Thus for x < 0, x™ = sgn(x) | x |™ for all integers n, consistent with (11a — 11b).
Fractional / non-integer powers (the same policy as in Section 5):

Ifr = g in lowest terms with odd q, the value on a negative base is realized on Rvia the odd root on

magnitudes plus integer powers (then restore the sign). If gis even, or ris irrational, the expression on
a negative base is undefined on R:
(—a) /7 defined only when q is odd; otherwise undefined. (25)
(—a)" undefined on R if r ¢ Z and cannot be reduced to p/q with odd q. (26)

Even root restriction (model dependent):
e Model I (ban):
*k/=a undefined on R,a > 0, Z, (27a)

e Model Il (allowed with preservation):
K=a = — Na,a>0 ke, (27b)
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Table (2): Quick examples consistent with (22) — (27).
Magnltude'only Model | (ban) 'Mod.el Il (allowe.d,
computation direction-preserving)

Operation Reference

Single negative
+3x -4 304=12 -12 —-12 restored: (22),
(23a)/(23b)
Direction x direction
banned in Model |
—3X—4 304=12 Undefined —-12 (23a); preserved
negative in Model Il
(23b)
Restore input sign
after integer power:
(24), consistent with
(11)
19 = 1—§has even
(-5)*° — Undefined Undefined denominator =
undefined by (25)
Even-root restriction:
V=9 — Undefined -3 (27a)inI; v—a =
—/ain 1l (27b)

(—2)2 22 =4 —4 —4

Table 2 illustrate the magnitude-first computation with model-specific sign restoration. For
(+3) x (—4), we compute 3 O 4 = 12and restore a single negative to get —12, which is allowed in both
models. For (—3) x (—4), Model | deems the operation undefined by (23a), whereas Model Il restores
a negative direction after multiplying magnitudes, yielding —12(by (23b)). For (—2)2, we compute 22 =
4 and then restore the input’s sign to obtain —4 in both models, consistent with (11). For (—5)*?, since
1.9 = 19/10 has an even denominator, the expression is undefined in both models (by (25)). For V=9,
Model | labels it undefined by (27a), while Model Il realizes it as —3 via the even-root convention with
sign restoration (by (27b)).

Comparison between the Classical Model and the Two Realistic Variants

We now contrast three readings: the Classical Model, Model | (ban on negative x negative; no even
roots of negatives on R), and Model Il (allowed with direction preservation; even roots of negatives
defined as negative of the positive root). All models compute on magnitudes, but only the realistic
variants forbid internal sign-multiplication and restore the sign once at the end. The table cites the
governing rules for each entry.

Core Comparison Table

Table (3): Classical vs. Model | vs. Model Il core outputs.

Classical Model Il (allowed
Operation Model Model | (ban: no —x—; no even roots on R) with direction
preservation)
(=3)? 49 not realized on R < negative x negative -9 «—via x? =sgn(x)
blocked x> (11
. not realized on R — even root blocked —4e—+/—a =
V= 4
16 l (15)/(27a) _/a(15)/(27b)
5805 . . . . not realized on R «
(-2) imaginary not realized on R «— denominator even (18) denominator even (18)
. . . . . —20« preserve
(—4) X (=5) 420 not realized « direction x direction banned negative direction
(23a) (23b)

Reminder: (sign magnitude split): x = sgn(x) | x | (2)

As indicated in Table 3. Classical vs. Model | vs. Model Il core outputs under the sign magnitude
policy. This table aligns symbolic outputs with the magnitude first policy: squaring preserves input sign
(11), even roots of negatives are out of domain in Model | but defined as negative in Model Il (15),
fractional exponents with even denominators (or irrational) on negative bases are not realized on R
(18), (19), and negative x negative is banned in Model | but yields a negative in Model 11 (23).
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Step-by-Step Explanations

A) Squaring a negative, (—3)2:
e Classical: (—3) x (—3) = +9.
¢ Realistic: compute on magnitude, then restore sign via (11):
[ ]

(-3)2=sgn(-3) | -31°=-9

Reading: no internal negative x negative; the sign is restored once at the end.
B) Even root of a negative, vV—16:

e Classical: move to C, get 4i.

e Realistic: magnitude-first, then sign restoration (15):

V=16 = —V16 = —4

Inverse consistency with (11): Root,(Sq(—4)) = —4 (16).
C) Fractional exponent with even denominator, (—2)%°:
e Classical: imaginary = iv/2.
¢ Realistic: not realized on Rsince 0.5 = %has even denominator (18):

(—2)%5 not realized on R

D) Negative x negative, (—4) x (=5):
e Classical: +20.
o Realistic: “direction x direction” is out of domain per (23):

(—4) x (=5) not realized in the realistic model
7.3 Additional Examples Highlighting the Differences

A) Opposite-signh multiplication, (+3) x (—4):
o Classical: —12.

e Realistic: multiply magnitudes, then restore a single negative (22), (23):

30O4=12 = Restore(+1,—-1;12) = —12

B) Odd-denominator root/power, (—27)*/3:
e Classical: —3.
¢ Realistic: allowed since the denominator is odd (18):

(—27)Y3 =—-327=-3
C) Higher even root, 1/—81:

e Classical: imaginary.
¢ Realistic: not realized on R(17):

Y/—81 not realized on R
D) Odd integer power of a negative, (—2)3:
e Classical: —8.
¢ Realistic: raise the magnitude, then restore the base’s sign once (24):

| =2 13=8 = final direction negative = —8

Conceptual Summary

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

1. Classical: sign is intertwined with the arithmetic steps (hence “negative x negative = positive”).
2. Realistic: compute only on magnitudes, prohibit direction x direction, and restore sign once

at the end using clear rules (11), (15), (23).
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3. Instructional payoff: explicit labels realized vs symbolic-only/not realized on R especially
for even roots of negatives and negative bases with even-denominator or non-integer
exponents (18), (19).

Educational and Real-World Impact

On a real only track, early instruction can avoid imaginary numbers altogether while remaining
faithful to algebra. In Model I, expressions that depend on even-denominator or non-integer exponents
on negative bases are not realized on R per (18), (19), and even roots of negatives are not realized per
(27a). In Model 11, even roots of negatives are realized via a magnitude-first computation with negative
sign restoration per (15) - (17), while even-denominator or non-integer exponents on negative bases
remain not realized per (18), (19). This postpones Cto the stage where its purpose is conceptually clear.

The governing convention is simple: compute on magnitudes only, then restore the sign once at the
end by context. Addition, magnitude-only multiplication (22), and powers on magnitudes (24) remain
concrete, while the sign is applied post hoc using the restoration policy (23) together with the model-
appropriate even-root convention (27a) in Model I, (27b) with (15) in Model Il. This separation supports
deeper understanding with less rote: students learn why an expression is realized, symbolic only, or out
of domain, rather than memorizing ad-hoc exceptions. Cross-references to (11), (15), (18), (19), and
(23) keep reasoning consistent.

The approach also aligns with physical modeling. Direction is neither multiplied nor squared; it is
respected and restored from context motion, current, cash flow while computations describe
magnitudes and the sign records orientation, mirroring real measurement pipelines. Assessment
becomes clearer because solutions can be labeled immediately as Realized on R, Symbolic-only /
requires C, or out of domain, making intended semantics explicit. When Cis introduced later, it appears
as a chosen extension for specific tasks (e.g., periodic models, phasors), not a mysterious fix.

Classroom contrasts make the policy concrete. For v—16, the classical route yields 4i; in Model | it
is not realized (27a), while in Model Il it is —4by (15). For (—2)%/2, the classical label is “imaginary”; in
both models it is not realized on R because the denominator is even (18). For (—3)?2, the classical result
is +9; in both models the result is —9 via x? = sgn(x) | x |? (11), avoiding negative x negative as an
internal step.

Future Work

Future work aims to develop a full calculus and exponential framework within the sign—magnitude
regime for both models, specifying domains on R, behavior at zero, and chain/product rules with post-
hoc sign restoration, together with criteria that separate realized identities from symbolic-only ones.
This includes an explicit axiomatization: for Model I, a formal account of the ban (no - x —, no even
roots of negatives on R); for Model Il, a precise description of direction-preserving multiplication, its
instructional scope, and its non-distributivity with standard addition where applicable. On the empirical
side, we propose controlled classroom studies across middle school, high school, and first-year
university cohorts to compare error rates, time-to-solution, and transfer to word problems against a
classical syllabus. Parallel software development will deliver interactive modules featuring a magnitude-
only core engine, single-step sign-restoration visuals, and clear output labels Realized on R, Symbolic-
only, or out of domain with teacher dashboards and analytics. A follow-on paper will extend the account
to negative exponents on negative bases, even roots under Model II's convention, and a didactic
reformulation that postpones i while mapping precisely when and why C is later introduced. Finally, we
outline local consistency proofs for both models in simple logical settings, curate constrained
counterexamples, and specify safe transition conditions between models, culminating in curricular
pathways that adopt Model | alone or blend it in stages with Model Il before a principled entry into
complex analysis.

Conclusion

Classical instruction often asks learners to accept non-realistic outcomes for example, a negative
direction becoming positive without a real mechanism, or the need to invoke a new number system to
justify even roots of negatives. The two-model, sign magnitude framework restores arithmetic to a
natural workflow: computations operate purely on magnitudes, direction is respected and restored at
the end by a transparent rule, even roots recover real values via sign restoration rather than complex
detours, and non-realized operations are left out of domain on R. In Model I, negative x negative is
banned and even roots of negatives are not realized on R; in Model Il, negative x negative is allowed
with a negative result (direction preserved) and even roots of negatives are defined as the negative of
the positive root on the magnitude. By making these boundaries explicit, the framework re-balances
symbolic algebra with physical meaning and offers a practical tool for coherent teaching, clearer
modeling, and a smoother on-ramp to complex analysis when and only when its purposes are
conceptually warranted.
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