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Abstract:  
Arithmetic rests on four fundamental operations, yet multiplication with negatives poses interpretational 

challenges that addition and subtraction do not. Historically, negative multiplication was introduced to 

preserve algebraic consistency and closure, but its tangible, real-world mechanism remains opaque: 

identities such as (−𝑎) × 𝑏 = −(𝑎 × 𝑏)and (−𝑎) × (−𝑏) = 𝑎𝑏 are algebraically valid while lacking an 

intuitive model that explains how the final sign arises as a realized operation. Building on prior work 

that re-read division by zero and division by negatives treating some actions as nonexistent rather than 

merely undefined this paper re-examines the legitimacy of negative multiplication as a real operation 

rather than a symbolic convention. We adopt a sign–magnitude split during computation with post-hoc 

sign restoration and propose a two-model framework. Model I bans direction × direction: squaring a 

negative preserve its sign, even roots of negatives are not realized on ℝ, and negative × negative is 

not a realized operation. Model II allows computation with direction preservation when two negatives 

meet, defining even roots of negatives as the negative of the positive root on the magnitude. The 

framework cleanly separates outcomes that are realized on ℝfrom those that are symbolic only 

(requiring ℂor falling outside the domain), without altering classical algebraic truths. The result is a 

principled boundary between symbolic structure and physical meaning, a transparent labeling policy 

for instruction, and a coherent pathway to complex analysis when and only when its introduction is 

conceptually warranted. 

  
 Keywords: Negative Multiplication, Sign–Magnitude Split, Realized Vs Symbolic Only, Even Roots Of 
Negatives. 

 الملخص
ترتكز الحسابات على أربع عمليات أساسية، غير أنّ الضرب مع السوالب يطرح تحديات تفسيرية لا تظهر في الجمع 
والطرح. تاريخيًا، أدُخل الضرب بالسالب لحفظ الاتساق الجبري وإغلاق المنظومة، لكن آليته الواقعية الملموسة ظلتّ غير 

(𝑎−) واضحة: فهويات مثل  × 𝑏 = −(𝑎 × 𝑏)و(−𝑎) × (−𝑏) = 𝑎𝑏  ٍصحيحة جبريًا لكنها تفتقر إلى نموذج
حدسي يشرح كيف تنشأ الإشارة النهائية كعملية متحقّقة. انطلاقًا من عملٍ سابق أعاد قراءة القسمة على الصفر والقسمة 

الب تعيد هذه الورقة فحص مشروعية الضرب بالس—مع اعتبار بعض الأفعال غير موجودة لا مجرد غير معرّفة بالسالب
المقدار مع استعادةٍ للإشارة بعديًا، ونقترح  / نتبنّى أثناء الحساب تفكيك الإشارة .كعملية واقعية لا كاصطلاح رمزي فحسب
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اتجاه: تربيع السالب يحافظ على إشارته، الجذور الزوجية للسوالب غير × النموذج الأوّل يحظر اتجاه  .إطارًا ثنائيّ النماذج
النموذج الثاني يسَمح بالحساب مع حفظ الاتجاه عند التقاء سالبين،  .سالب ليس عملية متحققّة× ، وسالب ℝمتحققّة على 

ويعرّف الجذور الزوجية للسوالب بأنها سالب الجذر على المقدار. يفصل هذا الإطار بوضوح بين النتائج المتحققّة على 
ℝ وتلك الرمزية فقط المحتاجة إلىℂ دون المساس بالحقائق الجبرية الكلاسيكية. والنتيجة أو الواقعة خارج النطاق، من

حدودٌ منضبطة بين البنية الرمزية والمعنى الفيزيائي، وسياسةُ وسمٍ تعليمية شفافة، ومسارٌ متماسك نحو التحليل المركّب 
 .تقتضي الضرورة المفاهيمية ذلك وفقط عندما عندما

 
 .المقدار، متحققّ مقابل رمزي فقط، الجذور الزوجية للأعداد السالبة / ةالضرب بالسالب، تفكيك الإشار الكلمات المفتاحية:

Introduction 
     This paper builds directly on our prior study, Rethinking Negative Multiplication: Separating 
Magnitude from Direction (Paper 1). There we proposed treating negativity primarily as direction rather 
than as a merely signed magnitude and showed how classroom confusion often arises from sliding 
sometimes unconsciously between purely symbolic rules and real-world operations. Here we extend 
that framework to three focal points: the status of negative × negative, powers of negative numbers 
(including non-integer exponents), and even roots of negative numbers. Our aim is not to alter algebraic 
validity but to clarify when a result is operationally realized on the real line and when it is symbolic-only, 
so instruction and applications can transparently mark the boundary. 
     Our guiding convention is a sign-magnitude split during computation, followed by controlled sign 
restoration. Concretely, we compute on magnitudes in the nonnegative domain while tracking direction 
separately; only at the end do we restore the sign according to explicit rules tied to the scenario 
(kinematic direction, financial inflow/outflow, charge, etc.). For instance, the standard distributive 
understanding of a negative factor across a positive factor remains intact at the level of magnitude, with 
the sign handled independently: 

𝑎 × (−𝑏)   =    − (𝑎 × 𝑏)                  (1) 

     To make the convention precise, we adopt a reusable decomposition for any 𝑥 ∈ ℝinto direction and 
magnitude: 

𝑥   =   sgn⁡(𝑥)  ∣ 𝑥 ∣, sgn⁡(𝑥) ∈ {−1,+1},     ∣ 𝑥 ∣≥ 0                (2) 

     Equations (1) and (2) will be referenced throughout without repetition. Building on Paper 1, we now 
formalize a rulebook that distinguishes (i) operations whose realization on negative inputs is well-
grounded in real settings from (ii) operations that are algebraically permissible yet lack a coherent real 
mechanism when both operands encode direction i.e., “direction × direction” treated as a realized 
operation rather than a symbolic composition. Statements relying on results proved in Paper 1 will be 
cited as “Paper 1, Sec. 11,” and only new or refined arguments are proved here. 
     Pedagogically, this yields two immediate benefits. First, learners carry out calculations on 
magnitudes simple, concrete steps while deferring the directional decision to an explicit restoration rule; 
this reduces cognitive load and avoids conflating algebraic syntax with physical meaning. Second, 
instructors and practitioners gain a principled way to label certain outputs symbolic only whenever the 
underlying operation does not correspond to a realizable process in the intended real domain (e.g., 
even roots of negatives on ℝ). 
     The remainder proceeds as follows. We first state the operational principles and a precise realized 
vs. symbolic-only criterion derived from the sign–magnitude convention and context-based restoration. 
We then analyze three case families negative × negative, negative bases under non-integer exponents, 
and even roots of negatives showing where the model supports realization and where it calls for 
symbolic-only tagging. A comparative section contrasts this reading with the classical symbolic 
approach, followed by implications for instruction and modeling. We close with open questions and a 
roadmap for extending the framework to exponential/logarithmic forms and other composite operations. 
Background 
     This paper builds directly on our prior study, Rethinking Negative Multiplication: Separating 
Magnitude from Direction (Paper 1, under review, 2025). Paper 1 distinguished algebraic validity from 
the real-world realization of an operation on the real line, showing that much classroom confusion arises 
when symbolic rules are over-read as distributive/operational mechanisms once negativity as direction 
is involved. Here we briefly review the algebraic facts that matter for negatives, indicate where real 
interpretations become nontrivial, and explain how a sign-magnitude split complements rather than 
replaces the standard account, preparing a two-model framework that shares the split but makes 
different operational choices. 
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     Field-axiomatically, (−𝑎) × (−𝑏) = 𝑎𝑏follows from distributivity and order compatibility; since 
(−1) × (−1) = +1, we obtain (−𝑎) × (−𝑏) = 𝑎𝑏for all real 𝑎, 𝑏. Pedagogically, learners often reinterpret 
this as if “a negative time a negative creates positivity,” whereas positivity here is a structural 
consequence of the axioms, not a physical mechanism flipping direction. Paper 1 argued that tracking 
direction (sign) separately from magnitude, computing on magnitudes, and restoring the sign by an 
explicit, context-tied rule reduces such misreadings. 
     For exponents, standard identities are already delimited when real values exist. For reduced 
rationales 𝑝/𝑞with 𝑝, 𝑞 ∈ ℤ>0, 

𝑥𝑝/𝑞 = √ 𝑥  𝑝 
𝑞

      (3) 

so, a negative base yields a real value only when 𝑞is odd: 

(−𝑎)𝑝/𝑞 ∈ ℝ iff 𝑞 is odd, 𝑎 > 0     (4) 
and even roots summarize the same restriction: 

√−𝑎
2𝑘

∉ ℝ, 𝑎 > 0, 𝑘 ∈ ℤ>0     (5) 
     In real only teaching and modeling, expressions falling under (5) or under (4) with even 𝑞are typically 

shunted to ℂ. Paper 1 recommended explicitly tagging such outcomes symbolic only unless complex-
analytic reading is intended, while keeping all algebraic identities intact. 
     In sum, the present paper refines rather than replaces the classical account: we retain (3) -(5) but 
add a clear use-regime distinguishing realized from symbolic only operations in direction-laden 
scenarios. Building on the same split, we later introduce two models: Model I bans direction × direction, 
thereby not realizing negative × negative or even roots of negatives on ℝ; Model II allows computation 
with direction preservation when two negatives meet and defines even roots of negatives as the 
negative of the positive root on the magnitude, while constraints (3) - (5) for exponents and roots remain 
in force. 
The Problem in the Classical Model 
     The classical reading becomes problematic at the point where a symbolic rule is silently promoted 
to a real-world operation. Once negativity is treated as direction, pushing sign rules through intermediate 
steps as if they were realized operations breeds confusion: squaring is read as an automatic sign flip, 
even roots of negatives are sent straight to ℂ, and non-integer powers on negative bases yield outputs 
with no presence on ℝ. This gap between algebraic structure and realistic meaning is the focus of this 
section, paving the way for a clear operational policy in the sections that follow. 
Symbolic Tension 
     Classical algebra asserts that squaring a negative yield a positive: 

          (−1)2   =    + 1      (6) 

     Algebraically this is correct; under a direction-based reading it is better seen as a magnitude-only 
operation (squaring 1), with direction × direction not treated as a realized step. Equation (6) therefore 
records a logical consequence of the algebraic system rather than a physical mechanism that flips 
direction (cf. the sign–magnitude split in (2) and the symbolic-only stance in [1]). For even roots of 
negatives, the expression is routinely transferred to ℂinstead of being declared non-real on ℝ: 

√−4   =   2𝑖      (7) 

     This is correct in complex analysis but, on a real-only track, represents a domain extension rather 
than a realized operation; hence it is tagged symbolic only unless a complex interpretation is explicitly 
intended (see the real-valued restriction in (5) and discussion in [5], [6]). For non-integer exponents on 
negative bases, complex outputs arise whenever the reduced fractional exponent has an even 
denominator; for instance, 1.9 = 19/10: 

(−5)1.9   ≈   26.69 − 9.60𝑖     (8) 

     Equation (4) already warns that (−𝑎)𝑝/𝑞is real only when 𝑞is odd. Thus (8) is no algebraic surprise; 
pedagogically, in real-only contexts it should be tagged symbolic-only unless branch choices in ℂare 
explicitly adopted ([1], [5], [6]). 
Philosophical Tension 
     Negativity encodes direction, not an independent magnitude. Using the standard decomposition 

𝑥 = sgn⁡(𝑥)  ∣ 𝑥 ∣ (2) 
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     We compute on ∣ 𝑥 ∣and restore direction by explicit rules tied to context. Reading (6) as a self-
caused direction change over-interprets what algebra supplies. In a realized, direction-aware 
interpretation, direction × direction is not an actual operation; statements like (6) and the general 
negative × negative = positive are algebraic consequences of field axioms, not causal mechanisms 
generating positivity. We therefore separate algebraic truth from the realizability of direction-laden 
operations ([1]). Raising a magnitude with direction should not, on a real only reading, alter direction 
unless a sign-restoration rule warrants it. Accordingly, we compute the power on the magnitude and 
then consult the restoration rule: if the case falls under the symbolic-only regime on ℝ(as in (7) and (8)), 
no new real direction is asserted; the operation is not realized unless we move explicitly to complex 
analysis (cf. (3) – (5) and [2 – 6]). This framing prepares the two-model treatment used later: in Model 
I, sign compounding is banned and even roots of negatives are not realized on ℝ; in Model II, sign 
restoration may preserve negative direction where specified, while even-denominator or irrational 
exponents on negative bases remain out of the real domain. 

Principles of the Two Model Framework  
     The overarching idea is to separate magnitude from direction during computation and to forbid 
sign composition as an internal step. We always compute on a positive magnitude and postpone the 
sign decision to the end via an explicit policy rule. Within this separation, we introduce two distinct 
models: Model I, which bans negative × negative and, as a consequence, does not define the square 
root of a negative number on ℝ; and Model II, which allows computation while preserving the 
negative direction when two negatives meet, thereby providing a definition of the square root of a 
negative number consistent with that policy. 
Separating Magnitude from Direction 
     Every negative input is represented as a positive magnitude with a fixed negative direction during 
the computation, and the sign is restored only at the end: 

𝑎signed   =    −   ∣ 𝑎 ∣     (9) 

     The prohibition principle states that multiplying/compounding signs is not a valid internal operation; 
signs are assigned and restored, not algebraically combined mid-process. This ensures semantic 
transparency: numerical work happens on magnitudes only, followed by a sign decision consistent with 
the chosen policy. 
Model I: Ban on Negative × Negative 
     In Model I, (−𝑎) × (−𝑏)is disallowed on ℝbecause it instantiates direction × direction, which the 
prohibition principle forbids. To remain semantically coherent, familiar operations are specialized as 
follows: 

• Squaring a negative is performed on the magnitude and the input’s direction is restored at the 
end: 

𝑥2   =   sgn⁡(𝑥)  ∣ 𝑥 ∣2             (11a) 

Hence (−2)2 = −4. Squaring is not always positive here; it preserves the input’s direction at the 
restoration step. 

• Even roots of negative numbers are undefined on ℝin this model, since an even root would 

invert a squaring step that retained direction. For example, √−9is undefined on ℝ. 

• Non-integer powers with a negative base: (−𝑎) 𝑟is undefined on ℝfor 𝑟 ∉ ℤ, 𝑎 > 0, consistent 
with the prohibition principle. 

• Negative × Negative: (−𝑎) × (−𝑏)is undefined on ℝwith 𝑎, 𝑏 > 0. No positive sign is generated 
by compounding two negatives. 

     Because squaring preserves direction under (11a), there is no direction-reversing even root within 
the same domain; consequently, the square root of a negative number is not available in Model I. 
Model II: Allowed with Negative-Direction Preservation 
     Model II keeps magnitude-direction separation but makes a different policy decision when two 
negatives meet: the negative direction is preserved. We multiply magnitudes and then restore a 
negative sign: 

• Squaring a negative follows the same operational template: 

𝑥2   =   sgn⁡(𝑥)  ∣ 𝑥 ∣2                        (11b) 

Thus (−2)2 = −4. Squaring again preserves direction. 

• Even roots of negative numbers are defined to be the negative of the root on the magnitude: 

√−𝑎 = − √𝑎(𝑎 > 0)              (12b) 

So √−9 = −3. This is not a return to the classical view; it is a definition chosen to be consistent with 
direction preservation in Model II. 
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• Non-integer powers with a negative base remain undefined on ℝfor non-integer exponents, 
aligning with the domain policy. 

(−𝒂) 𝒓 undefined on ℝ for 𝑟 ∈ ℝ ∖ ℤ, 𝑎 > 0   (13) 

• Negative × Negative is executed on magnitudes with a restored negative sign: 

(−a) × (−b) = − ab               (14) 

     Thus (−3) × (−4) = −12. The pedagogical aim is to show that multiplication is not a walk on the 
number line producing a double flip of direction; rather, it is a magnitude operation whose direction is 
determined by the policy. 
 

Table (1): Core examples under (11) - (14): Classical vs. Model I vs. Model II. 
Operation Classical Model I (ban: no −×−; no even roots on ℝ) Model II (allowed; preserve negative) 
(−2)2 +4 −4← via (11) −4← via (11) 
√−9 3𝑖 not realized on ℝ ← via (12), (27a) −3← via (12)/(27b) 
(−5)1.9 complex not realized on ℝ ← via (13), (18) not realized on ℝ ← via (13), (18) 

(−3) × (−4) +12 not realized ← via (14), (23a) −12← via (14), (23b) 

Note: We adopt the sign–magnitude split 𝑥 = sgn(𝑥)  ∣ 𝑥 ∣(2); computations run on magnitudes, and the 
sign is restored once according to the model’s policy. 
 
     Table 1 condenses the paper’s core message into a side-by-side view. It shows how the same 
operation receives different labels and outputs under the three readings: Classical, Model I (ban: no 
direction × direction, no even roots of negatives on ℝ), and Model II (allowed with direction 
preservation). Because all computations run on magnitudes and the sign is restored once at the end, 
the table cleanly separates what is realized on ℝ from what is symbolic-only / not realized. 
Pedagogically, it gives instructors a quick rubric for grading and discussion, and it helps students see 
why results diverge without changing the underlying algebraic identities. 
Realistic Interpretation of Roots and Powers  
     The behavior of roots and non-integer powers depends on the chosen model. Under Model I (ban 
on negative × negative), squaring preserves the input’s direction and even roots of negatives are not 
realized on ℝ. Under Model II (allowed with direction preservation), we compute on magnitudes and 
restore a negative sign when two negatives meet, which yields a consistent definition of even roots of 
negatives. 
Even Roots 
Model II (allowed with direction preservation): 
Using the magnitude first, restored sign template (11b), we define: 

√−𝑎   =    −  √𝑎, 𝑎 > 0     (15) 
This enforces two-way inverse consistency on all reals: 

√𝑥2
2

  = 𝑥 for all 𝑥 ∈ ℝ      (16) 
and generalizes to higher even roots: 

√−𝑎
2𝑘

   =    −   √𝑎
2𝑘

, 𝑎 > 0,  𝑘 ∈ ℤ>0     (17) 
     Equations (15) – (17) keep computation on magnitudes and restore the negative direction, making 
even-root operations on negatives realized within this model without defaulting to ℂ. 
Model I (ban): 
     Since squaring in (11a) preserves the input’s direction, no even root on ℝcan invert that step for 
negative inputs. Thus: 

• √−𝑎  is not realized on ℝ, and (16) is read domain-restricted:  

√𝑥2
2

  = 𝑥⁡when 𝑥 ≥ 0, and not realized when 𝑥 < 0. 

• Equation (17) does not apply to negatives within this model; even roots of negatives remain out 
of domain. 

Fractional or Non-Integer Powers 
In both models we distinguish: 

• If 𝑟 = 𝑝/𝑞in lowest terms with odd 𝑞, the value on a negative base is realized on ℝvia the odd 
root on magnitudes combined with integer powers (with sign restoration consistent with each 
model). If 𝑞is even, the operation is not realized on ℝ: 

(−𝑎) 𝑝/𝑞 is realized on ℝ   ⟺   𝑞 is odd; otherwise not realized.   (18) 
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     If 𝑟 ∈ ℝ ∖ ℤis irrational (or cannot be reduced to 𝑝/𝑞with odd 𝑞), powers of a negative base are not 
realized on ℝ: 

(−𝑎) 𝑟 not realized on ℝ, 𝑟 irrational.    (19) 
 

Illustrative example: 

(−5)1.9 = not realized on ℝ     (20) 

 

     Since 1.9 = 19/10has an even denominator, placing it under the second branch of (18). 
Consistency notes: In Model II the negative direction is restored after even-root/magnitude 
computations, so (15) - (17) apply. In Model I this restoration is disallowed for even roots, leaving 
squaring direction-preserving while no even-root inverse exists for negatives within ℝ. 
Partial Model  
     The partial model restricts core arithmetic to nonnegative magnitudes only and defers all sign 
handling to a post-computation restoration step. Multiplication and exponentiation are executed on 
magnitudes; signs are restored at the end according to the chosen policy (ban vs. allowed with 
preservation). 
Sign magnitude representation (shared): 

𝑥   =   sgn⁡(𝑥)  ∣ 𝑥 ∣, sgn⁡(𝑥) ∈ {+1,−1}, ∣ 𝑥 ∣≥ 0                (21) 

Magnitude only multiplication (allowed core): 
 

𝑚1  ⊙  𝑚2   =   𝑚1𝑚2, 𝑚1, 𝑚2 ≥ 0   (22) 
 

Post multiplication sign restoration (model specific): 

• Model I (ban on direction × direction): 

Restore(𝑠1, 𝑠2; 𝑚)   =    {
+ 𝑚
− 𝑚

undef.

 if 𝑠1 = 𝑠2 = +1

if exactly one of 𝑠1, 𝑠2 equals − 1

  if 𝑠1 = 𝑠2 = −1

             (23a) 

• Model II (allowed with negative-direction preservation): 

Restore(𝑠1, 𝑠2; 𝑚)   =    {
+ 𝑚
− 𝑚
− 𝑚

 if 𝑠1 = 𝑠2 = +1

if exactly one of 𝑠1, 𝑠2 equals − 1

  if 𝑠1 = 𝑠2 = −1

             (23b) 

Integer powers (unified magnitude-first definition): 
     Compute 𝑚𝑛on magnitudes only, then restore the original input’s sign (no internal sign-
multiplication; no parity-based flipping): 

(𝑠,𝑚) 𝑛    (𝑠, 𝑚 𝑛) →
 restore 

 𝑠 𝑚 𝑛, 𝑛 ∈ ℤ    (24)  

Thus for 𝑥 < 0, 𝑥  𝑛 = sgn⁡(𝑥)  ∣ 𝑥 ∣ 𝑛 for all integers 𝑛, consistent with (11𝑎  −  11𝑏). 
Fractional / non-integer powers (the same policy as in Section 5): 

     If 𝑟 =
𝑝

𝑞
  in lowest terms with odd 𝑞, the value on a negative base is realized on ℝvia the odd root on 

magnitudes plus integer powers (then restore the sign). If 𝑞is even, or 𝑟is irrational, the expression on 
a negative base is undefined on ℝ: 

(−𝑎) 𝑝/𝑞 defined only when 𝑞 is odd; otherwise undefined.    (25)  
(−𝑎) 𝑟 undefined on ℝ if 𝑟 ∉ ℤ and cannot be reduced to 𝑝/𝑞 with odd 𝑞.   (26)  
 

Even root restriction (model dependent): 

• Model I (ban): 

√−𝑎
2𝑘

 undefined on ℝ, 𝑎 > 0, ℤ>0              (27a) 
 

• Model II (allowed with preservation): 

√−𝑎
2𝑘

   =    −   √𝑎
2𝑘

, 𝑎 > 0, 𝑘 ∈ ℤ>0              (27b) 
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Table (2): Quick examples consistent with (22)  −  (27). 

Operation 
Magnitude only 

computation 
Model I (ban) 

Model II (allowed, 
direction-preserving) 

Reference 

+3 × −4 3⊙ 4 = 12 −12 −12 
Single negative 
restored: (22), 

(23a)/(23b) 

−3 × −4 3⊙ 4 = 12 Undefined −12 

Direction × direction 
banned in Model I 
(23a); preserved 

negative in Model II 
(23b) 

(−2)2 22 = 4 −4 −4 

Restore input sign 
after integer power: 
(24), consistent with 

(11) 

(−5)1.9 — Undefined Undefined 

1.9 =
19

10
has even 

denominator ⇒ 
undefined by (25) 

√−9 — Undefined −3 

Even-root restriction: 

(27a) in I; √−𝑎 =

−√𝑎in II (27b) 

 
     Table 2 illustrate the magnitude-first computation with model-specific sign restoration. For 
(+3) × (−4), we compute 3⊙ 4 = 12and restore a single negative to get −12, which is allowed in both 

models. For (−3) × (−4), Model I deems the operation undefined by (23a), whereas Model II restores 

a negative direction after multiplying magnitudes, yielding −12(by (23b)). For (−2)2, we compute 22 =
4 and then restore the input’s sign to obtain −4 in both models, consistent with (11). For (−5)1.9, since 

1.9 = 19/10 has an even denominator, the expression is undefined in both models (by (25)). For √−9, 
Model I labels it undefined by (27a), while Model II realizes it as −𝟑 via the even-root convention with 
sign restoration (by (27b)). 
Comparison between the Classical Model and the Two Realistic Variants 
     We now contrast three readings: the Classical Model, Model I (ban on negative × negative; no even 
roots of negatives on ℝ), and Model II (allowed with direction preservation; even roots of negatives 
defined as negative of the positive root). All models compute on magnitudes, but only the realistic 
variants forbid internal sign-multiplication and restore the sign once at the end. The table cites the 
governing rules for each entry. 
Core Comparison Table 
 

Table (3): Classical vs. Model I vs. Model II core outputs. 

Operation 
Classical 

Model 
Model I (ban: no −×−; no even roots on ℝ) 

Model II (allowed 
with direction 
preservation) 

(−3)2 +9 
not realized on ℝ ← negative × negative 

blocked 
-9 ← via ⁡ x 2 ⁡= sgn(𝑥) 

∣ 𝑥 ∣2      (11)  

√−16 4𝑖 
not realized on ℝ ← even root blocked 

(15)/(27a) 

−4← √−𝑎 =

−√𝑎(15)/(27b) 

(−2)0.5 imaginary not realized on ℝ ← denominator even (18) 
not realized on ℝ ← 

denominator even (18) 

(−4) × (−5) +20 
not realized ← direction × direction banned 

(23a) 

−20← preserve 
negative direction 

(23b) 

Reminder: (sign magnitude split): 𝑥 = sgn(𝑥)  ∣ 𝑥 ∣ (2) 
 
     As indicated in Table 3. Classical vs. Model I vs. Model II core outputs under the sign magnitude 
policy. This table aligns symbolic outputs with the magnitude first policy: squaring preserves input sign 
(11), even roots of negatives are out of domain in Model I but defined as negative in Model II (15), 
fractional exponents with even denominators (or irrational) on negative bases are not realized on ℝ 
(18), (19), and negative × negative is banned in Model I but yields a negative in Model II (23). 
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Step-by-Step Explanations 

A) Squaring a negative, (−3)2: 
• Classical: (−3) × (−3) = +9. 

• Realistic: compute on magnitude, then restore sign via (11): 

•  
(−3)2 = sgn⁡(−3)  ∣ −3 ∣2= − 9       (28) 
 

Reading: no internal negative × negative; the sign is restored once at the end. 

B) Even root of a negative, √−16: 

• Classical: move to ℂ, get 4𝑖. 
• Realistic: magnitude-first, then sign restoration (15): 

 

√−16 = −√16 = −4      (29) 
 

Inverse consistency with (11): Root⁡2(Sq⁡(−4)) = −4  (16). 

C) Fractional exponent with even denominator, (−2)0.5: 

• Classical: imaginary = 𝑖√2. 

• Realistic: not realized on ℝsince 0.5 =
1

2
has even denominator (18): 

 

(−2)0.5 not realized on ℝ    (30) 
 

D) Negative × negative, (−4) × (−5): 
• Classical: +20. 

• Realistic: “direction × direction” is out of domain per (23): 
 

(−4) × (−5) not realized in the realistic model   (31) 
 

7.3 Additional Examples Highlighting the Differences 
A) Opposite-sign multiplication, (+3) × (−4): 

• Classical: −12. 

• Realistic: multiply magnitudes, then restore a single negative (22), (23): 
 

3⊙ 4 = 12   ⇒   Restore(+1,−1; 12) = −12     (32) 
 

B) Odd-denominator root/power, (−27)1/3: 

• Classical: −3. 

• Realistic: allowed since the denominator is odd (18): 
 

(−27)1/3 = − √27
3

= −3     (33) 
 

C) Higher even root, √−81
4

: 

• Classical: imaginary. 

• Realistic: not realized on ℝ(17): 
 

√−81
4

 not realized on ℝ     (34) 
 

D) Odd integer power of a negative, (−2)3: 
• Classical: −8. 

• Realistic: raise the magnitude, then restore the base’s sign once (24): 

∣ −𝟐 ∣𝟑= 𝟖   ⇒   final direction negative = −𝟖    (35) 

Conceptual Summary 
1. Classical: sign is intertwined with the arithmetic steps (hence “negative × negative = positive”). 
2. Realistic: compute only on magnitudes, prohibit direction × direction, and restore sign once 

at the end using clear rules (11), (15), (23). 



 

39 | Afro-Asian Journal of Scientific Research (AAJSR)  

 

3. Instructional payoff: explicit labels realized vs symbolic-only/not realized on ℝ especially 
for even roots of negatives and negative bases with even-denominator or non-integer 
exponents (18), (19). 

Educational and Real-World Impact  
     On a real only track, early instruction can avoid imaginary numbers altogether while remaining 
faithful to algebra. In Model I, expressions that depend on even-denominator or non-integer exponents 
on negative bases are not realized on ℝ per (18), (19), and even roots of negatives are not realized per 
(27a). In Model II, even roots of negatives are realized via a magnitude-first computation with negative 
sign restoration per (15) - (17), while even-denominator or non-integer exponents on negative bases 
remain not realized per (18), (19). This postpones ℂto the stage where its purpose is conceptually clear. 
     The governing convention is simple: compute on magnitudes only, then restore the sign once at the 
end by context. Addition, magnitude-only multiplication (22), and powers on magnitudes (24) remain 
concrete, while the sign is applied post hoc using the restoration policy (23) together with the model-
appropriate even-root convention (27a) in Model I, (27b) with (15) in Model II. This separation supports 
deeper understanding with less rote: students learn why an expression is realized, symbolic only, or out 
of domain, rather than memorizing ad-hoc exceptions. Cross-references to (11), (15), (18), (19), and 
(23) keep reasoning consistent. 
     The approach also aligns with physical modeling. Direction is neither multiplied nor squared; it is 
respected and restored from context motion, current, cash flow while computations describe 
magnitudes and the sign records orientation, mirroring real measurement pipelines. Assessment 
becomes clearer because solutions can be labeled immediately as Realized on ℝ, Symbolic-only / 

requires ℂ, or out of domain, making intended semantics explicit. When ℂis introduced later, it appears 
as a chosen extension for specific tasks (e.g., periodic models, phasors), not a mysterious fix. 

     Classroom contrasts make the policy concrete. For √−16, the classical route yields 4𝑖; in Model I it 

is not realized (27a), while in Model II it is −4by (15). For (−2)1/2, the classical label is “imaginary”; in 

both models it is not realized on ℝ because the denominator is even (18). For (−3)2, the classical result 

is +9; in both models the result is −9 via 𝑥2 = sgn(𝑥)  ∣ 𝑥 ∣2 (11), avoiding negative × negative as an 
internal step. 
Future Work 
     Future work aims to develop a full calculus and exponential framework within the sign–magnitude 
regime for both models, specifying domains on ℝ, behavior at zero, and chain/product rules with post-
hoc sign restoration, together with criteria that separate realized identities from symbolic-only ones. 
This includes an explicit axiomatization: for Model I, a formal account of the ban (no − × −, no even 
roots of negatives on ℝ); for Model II, a precise description of direction-preserving multiplication, its 
instructional scope, and its non-distributivity with standard addition where applicable. On the empirical 
side, we propose controlled classroom studies across middle school, high school, and first-year 
university cohorts to compare error rates, time-to-solution, and transfer to word problems against a 
classical syllabus. Parallel software development will deliver interactive modules featuring a magnitude-
only core engine, single-step sign-restoration visuals, and clear output labels Realized on ℝ, Symbolic-
only, or out of domain with teacher dashboards and analytics. A follow-on paper will extend the account 
to negative exponents on negative bases, even roots under Model II’s convention, and a didactic 
reformulation that postpones i while mapping precisely when and why ℂ is later introduced. Finally, we 
outline local consistency proofs for both models in simple logical settings, curate constrained 
counterexamples, and specify safe transition conditions between models, culminating in curricular 
pathways that adopt Model I alone or blend it in stages with Model II before a principled entry into 
complex analysis. 
Conclusion 
     Classical instruction often asks learners to accept non-realistic outcomes for example, a negative 
direction becoming positive without a real mechanism, or the need to invoke a new number system to 
justify even roots of negatives. The two-model, sign magnitude framework restores arithmetic to a 
natural workflow: computations operate purely on magnitudes, direction is respected and restored at 
the end by a transparent rule, even roots recover real values via sign restoration rather than complex 
detours, and non-realized operations are left out of domain on ℝ. In Model I, negative × negative is 

banned and even roots of negatives are not realized on ℝ; in Model II, negative × negative is allowed 
with a negative result (direction preserved) and even roots of negatives are defined as the negative of 
the positive root on the magnitude. By making these boundaries explicit, the framework re-balances 
symbolic algebra with physical meaning and offers a practical tool for coherent teaching, clearer 
modeling, and a smoother on-ramp to complex analysis when and only when its purposes are 
conceptually warranted. 
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