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Abstract:

This paper presents a comprehensive simulation study comparing the performance of classical and
Bayesian regression methods when applied to data generated from complex, non-linear processes with
heteroscedastic errors. Using extensive Monte Carlo simulations, we evaluate classical linear
regression, Bayesian linear regression, Bayesian regularized regression with Horseshoe priors,
Bayesian Generalized Additive Models (GAMs), and Bayesian model averaging. Our findings indicate
that Bayesian methods, particularly flexible approaches like Bayesian GAMs, offer superior uncertainty
guantification, better-calibrated prediction intervals, and greater robustness to model misspecification
than classical approaches. The Bayesian framework naturally accommodates complex data structures
and provides principled uncertainty estimates, making it highly valuable for applied research where
understanding the full distribution of potential outcomes is critical.

Keywords: Bayesian regression, simulation study, uncertainty quantification, model comparison,
heteroscedasticity, non-linear models.
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Introduction:

Regression analysis is a cornerstone of statistical modeling and data analysis. For over two
centuries, classical ordinary least squares (OLS) regression, pioneered by Legendre (1805) and Gauss
(1809), has been the primary method for understanding relationships between variables. However, the
stringent assumptions of classical regression, linearity, homoscedasticity, and normality of errors, often
limit its applicability to real-world data, which frequently exhibit complex non-linear patterns and
heteroscedastic errors.

The Bayesian paradigm, with origins in the work of Bayes (1763) and Laplace (1774), offers a
fundamentally different approach to statistical inference. Although Bayesian methods have existed for
centuries, computational constraints historically restricted their widespread use. The advent of Markov
Chain Monte Carlo (MCMC) methods (Gelfand & Smith, 1990) and Hamiltonian Monte Carlo (Neal,
2011) has since revolutionized Bayesian computation, making complex models practically feasible.

Recent methodological advances have further integrated Bayesian principles with flexible modeling
techniques, including Bayesian regularization (Carvalho et al., 2010), Bayesian additive models (Hastie
& Tibshirani, 1990), and Bayesian nonparametrics (Ghosh & Ramamoorthi, 2003). Despite these
developments, a comprehensive comparison of these modern Bayesian approaches against classical
methods for complex data generation processes remains limited.

This study addresses this gap by conducting an extensive simulation study that: Compares classical
and Bayesian regression approaches under known data generation processes (Section 2), Evaluates
uncertainty quantification across different methodological frameworks (Section 3), Discusses simulation
results (Section 4), and Provides practical guidance for method selection in applied research
(Section 5).

Methods:
Data Generation Process:

We designed a sophisticated data generation process to mimic realistic, complex relationships while
maintaining control over the true underlying structure. For each simulation replication, data were
generated as follows:

Let:
X~N(0,%)

Where () is a correlation matrix with (p = 0.5) off-diagonal elements, representing the moderately
correlated predictors common in applied research.

The true data generation process follows:
y = 2sin(X;) + X3 + 0.5X5 * X, + tanh(Xs) + ¢
with heteroscedastic errors:
e~N(0,0%(X)), o(X) = 0.5+ 0.3|X,]

This formulation incorporates multiple challenging features: trigonometric functions, polynomial
terms, interaction effects, a saturation function (tanh), and heteroscedastic variance, creating a realistic
and complex data generation process.

Statistical Models:
Classical Linear Regression (OLS):

We employed the classical linear regression model as a baseline, using the ordinary least squares
(OLS) estimator. This model assumes a linear relationship:

y=XB+s, e~N(0, 0%)

where errors are independent and identically distributed Gaussian. The OLS estimator minimizes

the sum of squared residuals:

B =argmin ) (i = Xip)*

This method provides maximum likelihood estimates and closed-form confidence intervals under
homoscedasticity (Seber & Lee, 2012). While offering high interpretability and computational efficiency,
its linearity assumption may limit its ability to capture complex non-linear relationships. The Gauss-
Markov theorem establishes that OLS provides the best linear unbiased estimators (BLUE) under
standard assumptions, which are often violated in practice (Wooldridge, 2019).

Bayesian Linear Regression:

Bayesian linear regression extends the classical framework by incorporating prior distributions over
model parameters and generating posterior distributions via Bayes' theorem:
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(B, a%ly,X) <« p(yIX, B,0%)p(B)p(d?))

We employed weakly informative normal priors for regression coefficients and an inverse-gamma
prior for the error variance, following Gelman et al. (2013). The posterior distribution was sampled using
Hamiltonian Monte Carlo via the “rstanarm™ package (Carpenter et al., 2017), with 2 chains of 1000
iterations each. This approach provides natural uncertainty quantification through posterior
distributions, robust inference in finite samples, and the ability to incorporate prior knowledge.
Bayesian Horseshoe Regression:

To address potential overfitting and enhance variable selection, we implemented Bayesian
regression with a horseshoe prior. This continuous shrinkage prior features heavy tails and an infinite
spike at zero, making it effective for sparse signal recovery (Carvalho et al., 2010). The hierarchical
formulation is:

((B12, ~N (0, 2272) ) (A;~Half — Cauchy(0,1), 7j~Half — Cauchy(0,1))

This structure allows strong shrinkage of small coefficients toward zero while preserving large
coefficients, performing adaptive variable selection. The global shrinkage parameter (z)controls overall
sparsity, while local parameters (/1]-) allow for coefficient-specific adaptation.

Bayesian Generalized Additive Model (GAM):

To capture potential non-linear relationships, we employed Bayesian GAMs with smooth functions.

The GAM formulation extends the linear predictor to:
y=Bo+ X)) + LX)+ +,(X,) + €

where f;(.) are smooth functions represented using penalized B-splines with random walk priors on
the coefficients (Lang & Brezger, 2004; Wood, 2017). The smoothness of each function is controlled by
variance parameters with half-t priors. This approach provides a flexible framework for capturing non-
linear patterns while maintaining the benefits of Bayesian uncertainty quantification.
Bayesian Model Averaging (BMA):

To account for model uncertainty and improve predictive robustness, we implemented Bayesian
model averaging across multiple Bayesian linear models with different prior specifications. The BMA
framework combines predictions from (K) models weighted by their posterior model probabilities:

P71y, = D p((7)] M) p(Mcly, )
k

We considered two competing models: one with normal priors and another with Student-t priors on
the regression coefficients. BMA provides a coherent mechanism for acknowledging model uncertainty
and typically demonstrates improved predictive performance and better calibration than any single
model (Hoeting et al., 1999).

Model Evaluation and Comparison:

All models were evaluated using comprehensive metrics: root mean squared error (RMSE), mean
absolute error (MAE), R2 coefficient of determination, and for Bayesian methods, interval coverage and
calibration. The 95% credible intervals (Bayesian) and confidence intervals (frequentist) were compared
against true values to assess uncertainty quantification performance (Gneiting et al., 2007). We also
conducted posterior predictive checks and convergence diagnostics for Bayesian implementations to
ensure model adequacy and computational reliability (Gelman et al., 2013). Model comparison was
further enhanced using leave-one-out cross-validation information criteria (LOOIC), which provides a
fully Bayesian approach to estimating out-of-sample predictive accuracy (Vehtari et al., 2017).
Simulation Study:

Experimental Design:

To evaluate model performance and robustness across varying conditions, we conducted an
extensive simulation study with three scenarios: 100 runs with a sample size of 100, 200 runs with
n=200, and 300 runs with n=300. This design allows for assessing both the consistency of model
performance and the effects of increasing sample size on estimation accuracy and uncertainty
guantification.

Results and Discussion:

The simulation results (Tables 1-3) reveal a consistent performance hierarchy. The Bayesian
Generalized Additive Model (Bayesian_GAM) demonstrated superior predictive accuracy, with
substantially lower RMSE and MAE and higher R? (e.g., R* = 0.54-0.58) than all other models. This
suggests the true data-generating process involves non-linear relationships that only the flexible GAM
could capture effectively. In contrast, the linear models (Classical_LM, Bayesian_LM, et al.) formed a
lower-performing cluster, indicating their structural misspecification limited predictive power.
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Regarding uncertainty quantification, the Bayesian models (Bayesian_LM, Bayesian_Horseshoe,
and Bayesian_GAM) all exhibited excellent calibration, with coverage probabilities consistently near the
nominal 95% level. The Classical LM, however, failed catastrophically, with coverage plummeting to
0.35 in Scenario 3, proving its confidence intervals were profoundly misleading.

In summary, model flexibility was paramount for accuracy, while the Bayesian paradigm ensured
reliable uncertainty estimates. The Bayesian_GAM is the recommended approach, uniquely combining
high predictive accuracy with honest uncertainty quantification.

Table (1): Model Performance Metrics for Scenario 1 (100 Simulations, n=100)

Model RMSE | MAE R Coverage | SANIEEn
Score
Classical_LM 3.1348 2.3741 -0.0662 0.5515 0.3985
Bayesian_LM 3.1386 2.3769 -0.0690 0.9360 0.0500
Bayesian_Horseshoe 3.0552 2.3043 0.0249 0.9400 0.0440
Bayesian_GAM 2.0952 1.6864 0.4921 0.9465 0.0395
Bayesian_Model Avg | 3.0876 2.3269 -0.0165 0.8390 0.1150

Table (2): Model Performance Metrics for Scenario 2 (200 Simulations, n=200)

Model RMSE | MAE Rz | Coverage | CAlibration
Score
Classical_LM 2.9013 2.1878 | 0.0881 0.4292 0.5207
Bayesian_LM 2.9047 2.1906 | 0.0858 0.9490 0.0307
Bayesian_Horseshoe 2.8765 2.1661 0.1088 0.9502 0.0277
Bayesian GAM 2.0146 1.6240 0.5406 0.9490 0.0292
Bayesian_Model_Avg 2.8921 2.1794 0.0967 0.8631 0.0884
Table (3): Model Performance Metrics for Scenario 3 (300 Simulations, n=300)
Model RMSE | MAE Rz | Coverage | Cdlibration
Score
Classical_LM 2.9802 2.2142 | 0.1289 0.3507 0.5993
Bayesian_LM 2.9863 2.2183 0.1252 0.9469 0.0245
Bayesian_Horseshoe 2.9573 2.1970 0.1447 0.9469 0.0245
Bayesian_GAM 2.0251 1.6236 | 0.5822 0.9464 0.0239
Bayesian_Model_Avg 2.9786 2.2140 | 0.1311 0.8596 0.0910

The results, visualized across nine figures (e.g., Figure 1: Prediction Accuracy for n=100),
consistently highlight the superiority of the Bayesian_GAM. Figures comparing prediction accuracy
(RMSE, MAE) show a stark divide, with Bayesian_GAM's error distributions visibly lower and tighter.

Figures displaying R2 values confirm that Bayesian_GAM explains a much larger proportion of the
variance. Finally, figures focused on uncertainty quantification underscore a fundamental difference:
the Bayesian models consistently achieve the nominal 95% coverage, while the Classical_LM
demonstrates a profound and systematic failure.
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Prediction Accuracy ( 100 simulations, n=100)
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Figure (1): Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models
(100 Simulations, n = 100)
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Figure (2): Comparison of R? Performance Across Bayesian and Classical Models
(100 Simulations, n =100)

Uncertainty Quantification ( 100 simulations, n = 100)
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Figure (3): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical
Models (100 Simulations, n = 100)
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Prediction Accuracy ( 200 simulations, n = 200 )
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Figure (4): Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models
(200 Simulations, n = 200)
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Figure (5): Comparison of R? Performance Across Bayesian and Classical Models
(200 Simulations, n = 200)

Uncertainty Quantification ( 200 simulations, n = 200 )
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Figure (6): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical
Models (200 Simulations, n = 200)
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Prediction Accuracy ( 300 simulations, n = 300 )
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Figure (7): Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models
(300 Simulations, n = 300)
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Figure (8): Comparison of R? Performance Across Bayesian and Classical Models
(300 Simulations, n = 300)

Uncertainty Quantification ( 300 simulations, n =300 )
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Figure (9): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical
Models (300 Simulations, n = 300)
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Conclusion from Comprehensive Simulation:

The evidence across all simulation conditions provides compelling support for the superiority of
Bayesian GAM. Its consistent dominance in predictive accuracy, combined with robust and well-
calibrated uncertainty quantification across varying sample sizes, makes it the recommended approach
for practitioners. The persistent failure of classical regression to provide reliable uncertainty estimates,
a failure exacerbated by increasing sample sizes, suggests fundamental limitations in its approach to
variance estimation.

Conclusion:

This simulation study demonstrates that Bayesian regression methods, particularly flexible
approaches like Bayesian GAMs, provide substantial advantages over classical methods for analyzing
data from complex, non-linear generation processes with heteroscedastic errors. The Bayesian
framework naturally accommodates model uncertainty, provides superior calibration of prediction
intervals, and offers robust performance across varying conditions.

While classical methods maintain advantages in computational efficiency and interpretability for
simple linear relationships, the practical benefits of Bayesian approaches for complex real-world data
are compelling. As computational tools continue to advance and become more accessible, we anticipate
increasing adoption of Bayesian methods in applied research.

The choice between classical and Bayesian approaches ultimately depends on research goals, data
characteristics, and computational resources. However, for researchers seeking to understand complex
relationships while properly quantifying uncertainty, Bayesian methods offer a powerful framework that
often justifies their additional computational requirements.
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