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Abstract:  

This paper presents a comprehensive simulation study comparing the performance of classical and 
Bayesian regression methods when applied to data generated from complex, non-linear processes with 
heteroscedastic errors. Using extensive Monte Carlo simulations, we evaluate classical linear 
regression, Bayesian linear regression, Bayesian regularized regression with Horseshoe priors, 
Bayesian Generalized Additive Models (GAMs), and Bayesian model averaging. Our findings indicate 
that Bayesian methods, particularly flexible approaches like Bayesian GAMs, offer superior uncertainty 
quantification, better-calibrated prediction intervals, and greater robustness to model misspecification 
than classical approaches. The Bayesian framework naturally accommodates complex data structures 
and provides principled uncertainty estimates, making it highly valuable for applied research where 
understanding the full distribution of potential outcomes is critical. 
 

Keywords: Bayesian regression, simulation study, uncertainty quantification, model comparison, 
heteroscedasticity, non-linear models. 

 : الملخص
 من مولدة بيانات على تطبيقها عند والباييزية الكلاسيكية الانحدار  طرق أداء تقارن شاملة محاكاة دراسة  الورقة هذه تقدم

 الانحدار بتقييم نقوم النطاق، واسعة كارلو مونت محاكاة باستخدام.  متجانسة غير أخطاء ذات معقدة خطية غير عمليات

 ،هورسشو نوع من القبلية التوزيعات باستخدام المنتظم الباييزي والانحدار ،الباييزي الخطي والانحدار الكلاسيكي، الخطي

 النهج وخاصة  الباييزية، الأساليب أن  إلى نتائجنا تشير   ة.الباييزي النماذج ومتوسط الباييزية، العامة المضافة  والنماذج

 أكبر وقدرة فضل، أ بشكل معايرة تنبؤ وفترات اليقين، للعدم أفضل  تقديرًا تقدم الباييزية، العامة المضافة النماذج مثل المرنة

 البيانات هياكل طبيعي بشكل الباييزي الإطار يستوعب   .الكلاسيكية بالمناهج مقارنة النموذج تحديد سوء مواجهة على

 للنتائج الكامل التوزيع فهم يكون حيث التطبيقي للبحث عالية  قيمة ذا يجعله مما  مبدئية، يقين عدم تقديرات ويوفر المعقدة

 .الأهمية بالغ أمرًا المحتملة
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 النماذج التباين، تجانس دمع ،النماذج مقارنة اليقين، عدم المحاكاة، تقدير دراسة الباييزي، الانحدار :المفتاحية الكلمات

 .الخطية غير

Introduction: 
     Regression analysis is a cornerstone of statistical modeling and data analysis. For over two 
centuries, classical ordinary least squares (OLS) regression, pioneered by Legendre (1805) and Gauss 
(1809), has been the primary method for understanding relationships between variables. However, the 
stringent assumptions of classical regression, linearity, homoscedasticity, and normality of errors, often 
limit its applicability to real-world data, which frequently exhibit complex non-linear patterns and 
heteroscedastic errors. 
     The Bayesian paradigm, with origins in the work of Bayes (1763) and Laplace (1774), offers a 
fundamentally different approach to statistical inference. Although Bayesian methods have existed for 
centuries, computational constraints historically restricted their widespread use. The advent of Markov 
Chain Monte Carlo (MCMC) methods (Gelfand & Smith, 1990) and Hamiltonian Monte Carlo (Neal, 
2011) has since revolutionized Bayesian computation, making complex models practically feasible. 
     Recent methodological advances have further integrated Bayesian principles with flexible modeling 
techniques, including Bayesian regularization (Carvalho et al., 2010), Bayesian additive models (Hastie 
& Tibshirani, 1990), and Bayesian nonparametrics (Ghosh & Ramamoorthi, 2003). Despite these 
developments, a comprehensive comparison of these modern Bayesian approaches against classical 
methods for complex data generation processes remains limited. 
     This study addresses this gap by conducting an extensive simulation study that: Compares classical 
and Bayesian regression approaches under known data generation processes (Section 2), Evaluates 
uncertainty quantification across different methodological frameworks (Section 3), Discusses simulation 
results (Section 4), and Provides practical guidance for method selection in applied research                      
(Section 5). 
Methods: 
Data Generation Process: 
     We designed a sophisticated data generation process to mimic realistic, complex relationships while 
maintaining control over the true underlying structure. For each simulation replication, data were 
generated as follows: 
Let: 

X~N(0, Σ) 
 

     Where (Σ) is a correlation matrix with (ρ = 0.5) off-diagonal elements, representing the moderately 
correlated predictors common in applied research. 
The true data generation process follows: 

y = 2sin(X1) + X2
2 + 0.5X3 ∗ X4 + tanh(X5) + ε 

 

with heteroscedastic errors: 

ε~N(0, σ2(X)),        σ(X) = 0.5 + 0.3|X2| 
 

     This formulation incorporates multiple challenging features: trigonometric functions, polynomial 
terms, interaction effects, a saturation function (tanh), and heteroscedastic variance, creating a realistic 
and complex data generation process. 
Statistical Models: 
Classical Linear Regression (OLS): 
     We employed the classical linear regression model as a baseline, using the ordinary least squares 
(OLS) estimator. This model assumes a linear relationship: 

y = Xβ + ε,                ε~N(0, σ2) 
 

     where errors are independent and identically distributed Gaussian. The OLS estimator minimizes 
the sum of squared residuals: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝑋𝑖𝛽)2 
 

     This method provides maximum likelihood estimates and closed-form confidence intervals under 
homoscedasticity (Seber & Lee, 2012). While offering high interpretability and computational efficiency, 
its linearity assumption may limit its ability to capture complex non-linear relationships. The Gauss-
Markov theorem establishes that OLS provides the best linear unbiased estimators (BLUE) under 
standard assumptions, which are often violated in practice (Wooldridge, 2019). 
 
Bayesian Linear Regression: 
     Bayesian linear regression extends the classical framework by incorporating prior distributions over 
model parameters and generating posterior distributions via Bayes' theorem: 
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(𝑝(𝛽, 𝜎2|𝑦, 𝑋) ∝ 𝑝(𝑦|𝑋, 𝛽, 𝜎2)𝑝(𝛽)𝑝(𝜎2)) 
 

     We employed weakly informative normal priors for regression coefficients and an inverse-gamma 
prior for the error variance, following Gelman et al. (2013). The posterior distribution was sampled using 
Hamiltonian Monte Carlo via the `rstanarm` package (Carpenter et al., 2017), with 2 chains of 1000 
iterations each. This approach provides natural uncertainty quantification through posterior 
distributions, robust inference in finite samples, and the ability to incorporate prior knowledge. 
Bayesian Horseshoe Regression: 
     To address potential overfitting and enhance variable selection, we implemented Bayesian 
regression with a horseshoe prior. This continuous shrinkage prior features heavy tails and an infinite 
spike at zero, making it effective for sparse signal recovery (Carvalho et al., 2010). The hierarchical 
formulation is: 

((𝛽𝑗|𝜆𝑗 , 𝜏~𝑁(0, 𝜆𝑗
2𝜏2)) (𝜆𝑗~𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0,1),     𝜏𝑗~𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0,1)) 

 

     This structure allows strong shrinkage of small coefficients toward zero while preserving large 
coefficients, performing adaptive variable selection. The global shrinkage parameter (𝜏)controls overall 

sparsity, while local parameters (𝜆𝑗) allow for coefficient-specific adaptation. 

Bayesian Generalized Additive Model (GAM): 
     To capture potential non-linear relationships, we employed Bayesian GAMs with smooth functions. 
The GAM formulation extends the linear predictor to: 

y = β0 + f1(X1) + f2(X2)+. . . +fp(Xp) + ε 
 

     where  fj(. ) are smooth functions represented using penalized B-splines with random walk priors on 

the coefficients (Lang & Brezger, 2004; Wood, 2017). The smoothness of each function is controlled by 
variance parameters with half-t priors. This approach provides a flexible framework for capturing non-
linear patterns while maintaining the benefits of Bayesian uncertainty quantification. 
Bayesian Model Averaging (BMA): 
     To account for model uncertainty and improve predictive robustness, we implemented Bayesian 
model averaging across multiple Bayesian linear models with different prior specifications. The BMA 
framework combines predictions from (𝐾) models weighted by their posterior model probabilities: 

p(y∗|y, X) = ∑ p((y∗)|Mk). p(Mk|y, X)

k

 

 

     We considered two competing models: one with normal priors and another with Student-t priors on 
the regression coefficients. BMA provides a coherent mechanism for acknowledging model uncertainty 
and typically demonstrates improved predictive performance and better calibration than any single 
model (Hoeting et al., 1999). 
Model Evaluation and Comparison: 
     All models were evaluated using comprehensive metrics: root mean squared error (RMSE), mean 
absolute error (MAE), R² coefficient of determination, and for Bayesian methods, interval coverage and 
calibration. The 95% credible intervals (Bayesian) and confidence intervals (frequentist) were compared 
against true values to assess uncertainty quantification performance (Gneiting et al., 2007). We also 
conducted posterior predictive checks and convergence diagnostics for Bayesian implementations to 
ensure model adequacy and computational reliability (Gelman et al., 2013). Model comparison was 
further enhanced using leave-one-out cross-validation information criteria (LOOIC), which provides a 
fully Bayesian approach to estimating out-of-sample predictive accuracy (Vehtari et al., 2017). 
Simulation Study: 
Experimental Design: 
     To evaluate model performance and robustness across varying conditions, we conducted an 
extensive simulation study with three scenarios: 100 runs with a sample size of 100, 200 runs with 
n=200, and 300 runs with n=300. This design allows for assessing both the consistency of model 
performance and the effects of increasing sample size on estimation accuracy and uncertainty 
quantification. 
Results and Discussion: 
     The simulation results (Tables 1-3) reveal a consistent performance hierarchy. The Bayesian 
Generalized Additive Model (Bayesian_GAM) demonstrated superior predictive accuracy, with 
substantially lower RMSE and MAE and higher R² (e.g., R² ≈ 0.54-0.58) than all other models. This 
suggests the true data-generating process involves non-linear relationships that only the flexible GAM 
could capture effectively. In contrast, the linear models (Classical_LM, Bayesian_LM, et al.) formed a 
lower-performing cluster, indicating their structural misspecification limited predictive power. 
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     Regarding uncertainty quantification, the Bayesian models (Bayesian_LM, Bayesian_Horseshoe, 
and Bayesian_GAM) all exhibited excellent calibration, with coverage probabilities consistently near the 
nominal 95% level. The Classical_LM, however, failed catastrophically, with coverage plummeting to 
0.35 in Scenario 3, proving its confidence intervals were profoundly misleading. 
     In summary, model flexibility was paramount for accuracy, while the Bayesian paradigm ensured 
reliable uncertainty estimates. The Bayesian_GAM is the recommended approach, uniquely combining 
high predictive accuracy with honest uncertainty quantification. 
 

Table (1): Model Performance Metrics for Scenario 1 (100 Simulations, n=100) 

Model RMSE MAE R² Coverage 
Calibration 

Score 

Classical_LM 3.1348 2.3741 -0.0662 0.5515 0.3985 

Bayesian_LM 3.1386 2.3769 -0.0690 0.9360 0.0500 

Bayesian_Horseshoe 3.0552 2.3043 0.0249 0.9400 0.0440 

Bayesian_GAM 2.0952 1.6864 0.4921 0.9465 0.0395 

Bayesian_Model_Avg 3.0876 2.3269 -0.0165 0.8390 0.1150 
 

 
Table (2): Model Performance Metrics for Scenario 2 (200 Simulations, n=200) 

Model RMSE MAE R² Coverage 
Calibration 

Score 

Classical_LM 2.9013 2.1878 0.0881 0.4292 0.5207 

Bayesian_LM 2.9047 2.1906 0.0858 0.9490 0.0307 

Bayesian_Horseshoe 2.8765 2.1661 0.1088 0.9502 0.0277 

Bayesian_GAM 2.0146 1.6240 0.5406 0.9490 0.0292 

Bayesian_Model_Avg 2.8921 2.1794 0.0967 0.8631 0.0884 
 

Table (3): Model Performance Metrics for Scenario 3 (300 Simulations, n=300) 

Model RMSE MAE R² Coverage 
Calibration 

Score 

Classical_LM 2.9802 2.2142 0.1289 0.3507 0.5993 

Bayesian_LM 2.9863 2.2183 0.1252 0.9469 0.0245 

Bayesian_Horseshoe 2.9573 2.1970 0.1447 0.9469 0.0245 

Bayesian_GAM 2.0251 1.6236 0.5822 0.9464 0.0239 

Bayesian_Model_Avg 2.9786 2.2140 0.1311 0.8596 0.0910 
 

     The results, visualized across nine figures (e.g., Figure 1: Prediction Accuracy for n=100), 
consistently highlight the superiority of the Bayesian_GAM. Figures comparing prediction accuracy 
(RMSE, MAE) show a stark divide, with Bayesian_GAM's error distributions visibly lower and tighter.  
     Figures displaying R² values confirm that Bayesian_GAM explains a much larger proportion of the 
variance. Finally, figures focused on uncertainty quantification underscore a fundamental difference: 
the Bayesian models consistently achieve the nominal 95% coverage, while the Classical_LM 
demonstrates a profound and systematic failure. 
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Figure (1): Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models 
(100 Simulations, n = 100) 

 

 
 

Figure (2): Comparison of R2 Performance Across Bayesian and Classical Models                                         
(100 Simulations, n =100) 

 

 
 

Figure (3): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical 
Models (100 Simulations, n = 100) 
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Figure (4):  Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models     
(200 Simulations, n = 200) 

 

 
 

Figure (5):  Comparison of R2 Performance Across Bayesian and Classical Models                                          
(200 Simulations, n = 200) 

 

 
 

Figure (6): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical 
Models (200 Simulations, n = 200) 
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Figure (7): Comparison of Prediction Accuracy Performance Across Bayesian and Classical Models            
(300 Simulations, n = 300) 

 

 
 

Figure (8):  Comparison of R2 Performance Across Bayesian and Classical Models                                           
(300 Simulations, n = 300) 

 

 
 

Figure (9): Comparison of Uncertainty Quantification Performance Across Bayesian and Classical 
Models (300 Simulations, n = 300) 
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Conclusion from Comprehensive Simulation: 
     The evidence across all simulation conditions provides compelling support for the superiority of 
Bayesian GAM. Its consistent dominance in predictive accuracy, combined with robust and well-
calibrated uncertainty quantification across varying sample sizes, makes it the recommended approach 
for practitioners. The persistent failure of classical regression to provide reliable uncertainty estimates, 
a failure exacerbated by increasing sample sizes, suggests fundamental limitations in its approach to 
variance estimation. 
Conclusion: 
     This simulation study demonstrates that Bayesian regression methods, particularly flexible 
approaches like Bayesian GAMs, provide substantial advantages over classical methods for analyzing 
data from complex, non-linear generation processes with heteroscedastic errors. The Bayesian 
framework naturally accommodates model uncertainty, provides superior calibration of prediction 
intervals, and offers robust performance across varying conditions. 
     While classical methods maintain advantages in computational efficiency and interpretability for 
simple linear relationships, the practical benefits of Bayesian approaches for complex real-world data 
are compelling. As computational tools continue to advance and become more accessible, we anticipate 
increasing adoption of Bayesian methods in applied research. 
     The choice between classical and Bayesian approaches ultimately depends on research goals, data 
characteristics, and computational resources. However, for researchers seeking to understand complex 
relationships while properly quantifying uncertainty, Bayesian methods offer a powerful framework that 
often justifies their additional computational requirements. 
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