
 

Afro-Asian Journal of Scientific Research (AAJSR) 

 العلميالمجلة الأفروآسيوية للبحث 
E-ISSN: 2959-6505 

Volume 3, Issue 4, 2025 
Page No: 238-243 

Website: https://aajsr.com/index.php/aajsr/index  
SJIFactor 2024: 5.028 ISI 2025: 0.915 ( معامل التأثير العربيAIF )2025 :0.76 

 

238 | Afro-Asian Journal of Scientific Research (AAJSR)  

Solitary Wave Solution for the Time-Fractional Modified 
KdV-Burger’s Equation by Using the Residual Power 

Series Method 
 

Fatma M. Ahmed1*, Muna Ali Mansour2, Mahmoud El-Horbaty3  
1,2 Mathematics Department, Faculty of Sciences -Alajelat, University of Zawia, Alajelat, Libya  

3Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt 

 

باستخدام طريقة  معادلة كورتيج دي فريس و برجرز المعدلة الكسرية الزمنيةل المنفردالحل الموجي 

 متسلسلة القوى المتبقية

 
 3محمود إبراهيم الهيربيطي، 2منى على منصور، *1فاطمة مفتاح احمد

 ليبيا، العجيلات، جامعة الزاوية، كلية العلوم العجيلات، قسم الرياضيات 21,  
 مصر، الزقازيق، جامعة الزقازيق، العلوم كلية ،ضياتالرياقسم  3

 
*Corresponding author: f.ahmed@zu.edu.ly  

Received: October 15, 2025 Accepted: December 25, 2025 Published: December 30, 2025 

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 
Abstract:  
This study examines the usage of the residual power series method (RPSM) to numerically investigate 
the solution of the time-fractional modified KdV-Burger’s equation in the Caputo’s sense. The reliability 
and the efficiency of the method were demonstrated using 2D and 3D illustrations as well as error. The 
obtained results have indicated the potency of the RPSM for such initial values problems.  
  
Keywords: Residual power series method, fractional modified KdV-Burger’s equation, Caputo’s sense 

 الملخص
ياً حل معادلة كورتيج دي فريس عددلتتحرى  ،(RPSMمتسلسلة القوى المتبقية ) استخدام طريقةهذه الدراسة تفحص 

وبرجرز المعدلة الكسرية الزمنية بمعنى كابوتو. تم اثبات موثوقية وكفاءة الطريقة باستخدام رسومات توضيحية في بعدين 
لحل هذا النوع من مسائل  RPSM ذلك الخطأ، اشارت النتائج التي تم الحصول عليها الى فعالية طريقةوثلاثة ابعاد وك

  .دائيةالقيم الابت
 

 معنى كابوتو.، معادلة كورتيج دي فريس وبرجرز المعدلة الكسرية، طريقة متسلسلة القوى المتبقية الكلمات المفتاحية:
Introduction 
In the last decade, the exploration of memory effect, heredity properties and non-local behaviours of 
mathematical models in various disciplines and fields of science, has gained a tremendous attention 
among researches. Indeed, the fractional partial differential equations (FPDEs), which is a combination 
of partial differential equations (PDEs) and fractional calculus, provide a clear description of the interplay 
between the nonlinearity characteristic and the non-integer order of the derivative involved. Further, 
wide range of physical phenomena, engineering, finance, and even social sciences with memory are 
modelled using FPDEs [1,2].  
Moreover, numerical and semi-analytical methods were utilized extensively, of late, to construct the 
approximate solutions of FPDEs, among these methods, the new transform method (ITM) and the 
residual power series transform method (RPSTM) [3], Laplace residual power series technique [4], the 
rational non-polynomial splines [5], The Homotopy perturbation transform method (HPTM) and the 
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Yang transform decomposition method (YTDM) [6], and lastly but not last, the  New Local Fractional 
Mohand–Adomian Decomposition[7]. In study [8], Abu Arqub was the first to establish the RPSM to 
solve fuzzy differential equations of second order. This method is composed of Taylor’s series and the 
residual error function, afterwards it was developed to a new alogarithm that is effiecintly applied on 
non-linear higher intial value (IVPs) and boundary value problems (BVPs) to construct power series 
solutions [9–11].  
Many studies have empoyed the RPSM for obtaining the approximate analytical soltions of 
FPDEs[4,12], El-Ajou et. al. [13] utlized the method to seek the explicit solutions of time-space fractional 
KdV-burgers equation, on the other hand, the advatage of appling an integral transform with RPSM was 
estaplished in a recent study by Iqbal et. al. [14] in which they have used it to obtain the semi-analytical  
solutions to fractional modified KdV equation an coupled Burger’s equations along with another well-
known Iterative method.  
In this research article, we aim to investigate the applicability, and efficiency of the RPSM on 
constructing the semi-analytical solution of the time-fractional modified Korteweg-de Vries Burger’s 
equation (mKdV-Burger’s), in the Caputo’ sense, of the form: 

𝐷𝑡
𝛾
𝒴 + 𝑎𝒴2𝜕𝑥𝒴 + 𝛼 𝜕𝑥𝑥𝑥𝒴 + 𝛽𝜕𝑥𝑥𝒴 = 0,           𝑥 ∈ 𝑅, 𝑡 > 0, 0 < 𝛾 ≤ 1 (1) 

Subjected to the IC: 
𝒴(𝑥, 0) = ℊ0(𝑥) (2) 

where 𝒴(𝑥, 𝑡) is the wave function, of time and space, in which |𝒴(𝑥, 𝑡)| approaches zero, as 𝑥 and t 
are both tending to negative infinity .The notations, 𝑎, 𝛼1,and 𝛽1 are arbitrary real constants, such that 

𝑎, 𝛼 , 𝛽 ≠ 0,  and 𝛼 < 0  , to be more specific, 𝑎 is the coefficient of the nonlinear term, 𝛼 governs the 

dispersion, and 𝛽  is the coefficient of dissipation. Plus, in which  𝑥 ∈ [0,∞) the initial condition function 

is analytic. The time-fractional mKdV-Burgers is a general frame work for special case by setting 𝛽 =
0, 𝛼 = 0, 𝛽 = 𝛼 = 0, 𝑎 = 𝛼 = 0, 𝑎 = 𝛽 = 0,  and  𝑎 = 𝛽 = 𝛼 = 0 , equation (1) is reduced to the Modified 
Korteweg-de Vries equation (mKdV), the modified Burgers equation, the nonlinear advection equation, 
the diffusion equation, the linear dispersive equation, and the advection equation (respectively) of  time 
fractional order [15–17]. 
The current article is outlined in the following way, in the section 1, most influential and fundamental 
concepts of fractional calculus were provided along with the essential definitions of the method of our 
consideration. In Section 0, the RPSM was employed on the general form of the time-fractional modified 
KdV-Burger’s equations (1) and (2). A detailed interpretation of the numerical simulation on the effect 
of the fractional derivative was demonstrated in section 4. Finally, the merits and eligibility of the method 
are given as a brief conclusion in section 5. 
Basic Concepts and Representation 
In this section, the essential concepts, definitions, theorems, as well as results used in the study are 
fully addressed below [1,2,9–12]. 
Definition 1. The Riemann-Liouville (R-L) operator with fractional order 1 > 𝛾 ≥ 0 of a function 𝑔 in the 

space 𝐶𝜇  , 𝜇 ≥ −1, is defined as: 

𝒥𝛾𝑔(𝑡) =
1

Γ(𝛾)
∫ (𝑡 − 𝜏)𝛾−1𝑔(𝜏)𝑑𝜏
𝑡

0

,                    𝛾 > 0, 𝑡 > 0   (3) 

where  𝒥0𝑔(𝑡) = 𝑔(𝑡), and Γ(γ) = ∫ 𝜏𝛾−1 𝑒−𝜏𝑑𝜏.
∞

0
 

Definition 2. The fractional derivative of order 𝛾  in the Caputo sense, of a function 𝑔, is  

𝐷𝛾  𝑔(𝑡) =

{
 
 

 
 𝒥𝑛−𝛾𝑔(𝑛)(𝑡) =

1

Γ(𝛾)
∫ (𝑡 − 𝜏)(𝑛−𝛾−1)𝑔(𝑛)(𝑡)𝑑𝜏
𝑡

0

,       𝑡, 𝜏 > 0, 𝑛 − 1 <  𝛾 ≤ 𝑛

𝑑𝑛𝑔(𝑡)

𝑑𝑡𝑛
,                                                                                                       𝛾 = 𝑛

 (4) 

We provide, below, some useful properties on the R-L operator and the Caputo derivative: 

1. 𝒥𝛾𝐶 =
𝑐

Γ(𝛾+1)
 𝑡𝛾 

2. 𝒥𝛾𝐽𝛽𝑔(𝑡) = 𝒥𝛾+𝛽𝑔(𝑡) =  𝒥𝛽𝒥𝛾𝑔(𝑡)  

3. 𝒥𝛼𝑡𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑡𝛼+𝛾 

4.  If  𝐶 a constant 𝐷𝛾𝐶 = 0,        . 
5. 𝐷𝛾𝑡𝑚 = 0,    𝑚 < 𝛾 

6. 𝐷𝛾𝑡𝑚 =
Γ(𝑚+1)

Γ(𝑚+1−𝛾)
𝑡𝑚−𝛾          , 𝑚 ≥ 𝛾. 

Definition 3. The Caputo time-fractional operator of order 𝛾 of 𝒴(𝑥, 𝑡) is given by, 

𝐷𝑡
𝛾
𝒴(𝑥, 𝑡) = 𝜕𝑡

𝛾
𝒴(𝑥, 𝑡) =

1

Γ(𝑚 − 𝛾)
∫ (𝑡 − 𝜈)𝑚−𝛾−1

𝜕𝑚𝒴(𝑥, 𝜈)

𝜕𝑡𝑚
𝑑𝜈

𝑡

0

,      𝑚 − 1 < 𝛾 < 𝑚   (5) 
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and that 𝐷𝑡
𝑚𝒴(𝑥, 𝑡) =

𝜕𝑚𝒴 (𝑥,𝑡)

𝜕𝑡𝑚
,             𝑚 ∈ ℕ. 

Definition 4. A fractional power series expansion (FPS) at  𝑡 = 𝑡0 is given by, 

ℊ0(𝑥) + ℊ1(𝑥)(𝑡 − 𝑡0)
𝛾 + ℊ2(𝑥)(𝑡 − 𝑡0)

2𝛾 +⋯ = ∑ ℊ𝑚(𝑥)(𝑡 − 𝑡0)
𝑚𝛾

∞

𝑚=0

    

  , 0 ≤ 𝑚 − 1 < 𝛼 ≤ 𝑚  𝑡 ≥ 𝑡0, (6)

 

Where ℊ𝑚(𝑥)(𝑚 = 0,1,2, … ) is the coefficients of the series. 

Definition 5.  (See [1,12]). The expansion of 𝒴(𝑥, 𝑡) at 𝑡0  of an FPS is given by: 

𝒴(𝑥, 𝑡) = ∑ ℊ𝑚(𝑥)(𝑡 − 𝑡0)
𝑚𝛾

∞

𝑚=0

= ∑ 𝐷𝑡
𝑚𝛾
𝒴(𝑥, 𝑡0) Γ(𝑚𝛾 + 1)⁄ (𝑡 − 𝑡0)

𝑚𝛾

∞

𝑚=0

,       

        0 ≤ 𝑚 − 1 < 𝛾 ≤ 𝑥 ∈ 𝐼, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅  (7)

 

where 𝐷𝑡
𝑚𝛾
𝒴(𝑥, 𝑡)  for , 𝑚 = 0,1,2, … . is continuous on the rectangular 𝐼 × (𝑡0, 𝑡0 + 𝑅), and  𝑅 is the 

radius of convergence. The formula in (7) is the Generalized Taylor Series. Note that if 𝛾 = 1,the formula 
in equation (7) gives the classical Taylor series. 
RPSM for the Modified KdV-Burger’s Equation 
In this section, we are applying the RPSM to the time-fractional modified KdV-Burger’s equations (1) 
and (2). According to El-Ajou et. al.[12], and by the use of equation (7), the solution of (1) can be 
expressed in a series form as: 

𝒴(𝑥, 𝑡) = ∑ ℊ𝑚(𝑥)
𝑡𝑚𝛾

Γ(1 + 𝑚𝛾)
  

∞

𝑚=0

    (8) 

And approximate solution of the kth order of equation (8), is: 

𝒴𝑘(𝑥, 𝑡) = ∑ ℊ𝑚(𝑥) 
𝑡𝑚𝛾

Γ(1 + 𝑚𝛾)

𝑘

𝑚=0

,             (9) 

since 𝒴(𝑥, 𝑡) holds the IC equation (2) 𝒴(𝑥, 0) = ℊ0(𝑥) = ℊ(𝑥),  then equation (9) could be rewritten as:  

 𝒴𝑘(𝑥, 𝑡) = ℊ(𝑥) + ∑ ℊ𝑚(𝑥) 
𝑡𝑚𝛾

Γ(1 +𝑚𝛾)

𝑘

𝑚=1

,       (10)  

Where      0 < 𝛾 ≤ 1,    𝑥 ∈ 𝐼, 𝑡 ≥ 0 , 𝑘 = 1,2,3, … , (𝑚 = 0,1,2, … , 𝑘). 
To compute the coefficients ℊ𝑚(𝑥), the residual function for the KdV-Burger’s equations (1) is defined 
by:  

ℛℯ𝓈(𝑥, 𝑡) = 𝜕𝑡
𝛾
𝒴(𝑥, 𝑡) + 𝑎𝒴(𝑥, 𝑡)2𝜕𝑥𝒴(𝑥, 𝑡) + 𝛼𝜕𝑥,𝑥,𝑥𝒴(𝑥, 𝑡) + 𝛽𝜕𝑥,𝑥𝒴(𝑥, 𝑡)   (11) 

And the kth residual function for 𝑘 = 1,2, … is: 

ℛℯ𝓈𝑘(𝑥, 𝑡) = 𝜕𝑡
𝛾
𝒴𝑘(𝑥, 𝑡) + 𝑎𝒴𝑘(𝑥, 𝑡)

2𝜕𝑥𝒴𝑘(𝑥, 𝑡) + 𝛼𝜕𝑥,𝑥,𝑥𝒴𝑘(𝑥, 𝑡) + 𝛽𝜕𝑥,𝑥𝒴𝑘(𝑥, 𝑡) ,      (12) 
In which ℛℯ𝓈(𝑥, 𝑡) = 0 and that, ℛℯ𝓈𝑘(𝑥, 𝑡) approaches ℛℯ𝓈(𝑥, 𝑡) as 𝑘 tends to infinity, ∀ 𝑥 ∈ 𝐼, 𝑡 > 0. 

Eventually, 𝐷𝑡
𝑛𝛾
ℛℯ𝓈(𝑥, 𝑡) = 0,  𝐷𝑡

𝑛𝛾
ℛℯ𝓈(𝑥, 0) = 𝐷𝑡

𝑛𝛾
ℛℯ𝓈𝑘(𝑥, 0) = 0  , (𝑛 = 0,1, … , 𝑘) (for further detailed 

explanation see [12,18]).  
when 𝑘 = 1 equations (10), and (12) become: 

𝒴1(𝑥, 𝑡) = ℊ(𝑥) + ∑ ℊ𝑚(𝑥) 
𝑡𝑚𝛾

Γ(1 + 𝑚𝛾)

1

𝑚=1

= ℊ(𝑥) + ℊ1(𝑥)
𝑡𝛾

Γ(1 + 𝛾)
  (13) 

And, 

ℛℯ𝓈1(𝑥, 𝑡) = 𝜕𝑡
𝛾
𝒴1 + 𝑎𝒴1

2𝜕𝑥𝒴1 + 𝛼𝜕𝑥,𝑥,𝑥𝒴1 + 𝛽𝜕𝑥,𝑥𝒴1  (12) 

 Substituting equation (13) into ℛℯ𝓈1(𝑥, 0) = 0, and solving for the unknown ℊ1(𝑥), to get: 

ℊ1(𝑥) = −𝑎ℊ(𝑥)
2ℊ(𝑥) − 𝛼1ℊ

′′′(𝑥) − 𝛽1ℊ
′′(𝑥) (15) 

When 𝑘 = 2, we get: 

𝒴2(𝑥, 𝑡) = ℊ(𝑥) + ∑ ℊ𝑚(𝑥) 
𝑡𝑚𝛾

Γ(1 +𝑚𝛾)

2

𝑚=1

= ℊ(𝑥) + ℊ1(𝑥)
𝑡𝛾

Γ(1 + 𝛾)
+ ℊ2(𝑥)

𝑡2𝛾

Γ(1 + 2𝛾)
 (16) 

And, 

ℛℯ𝓈2(𝑥, 𝑡) = 𝜕𝑡
𝛾
𝒴2 + 𝑎𝒴2

2𝜕𝑥𝒴2 + 𝛼𝜕𝑥,𝑥,𝑥𝒴2 + 𝛽 𝜕𝑥,𝑥𝒴2  (17) 

Substituting equation (16) into 𝐷𝑡
𝛾
ℛℯ𝓈2(𝑥, 0) = 0, we obtain: 

ℊ2(𝑥) = −𝑎ℊ(𝑥)ℊ1(𝑥)ℊ
′(𝑥) − 𝑎 ℊ(𝑥)2ℊ1

′ (𝑥) − 𝛼ℊ1
′′′(𝑥) − 𝛽ℊ1

′′(𝑥)  (18) 
When 𝑘 = 3, to yield: 
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𝒴3(𝑥, 𝑡) = ℊ(𝑥) + ∑ ℊ𝑚(𝑥) 
𝑡𝑚𝛾

Γ(1 + 𝑚𝛾)

3

𝑚=1

                                                                            

= ℊ(𝑥) + ℊ1(𝑥)
𝑡𝛾

Γ(1 + 𝛾)
+ ℊ2(𝑥)

𝑡2𝛾

Γ(1 + 2𝛾)
+ ℊ3(𝑥)

𝑡3𝛾

Γ(1 + 3𝛾)
 (19)

 

And the residual function is  

ℛℯ𝓈3(𝑥, 𝑡) = 𝜕𝑡
𝛾
𝒴3 + 𝑎𝒴3

2𝜕𝑥𝒴3 + 𝛼𝜕𝑥,𝑥,𝑥𝒴3 + 𝛽 𝜕𝑥,𝑥𝒴3 (20) 

By the use of 𝐷𝑡
2𝛾
ℛℯ𝓈3 = 0, the coefficient ℊ3(𝑥) is given by: 

ℊ3(𝑥) = −2𝑎ℊ(𝑥)ℊ2(𝑥)ℊ
′(𝑥) − 𝑎ℊ1(𝑥)

Γ(1 + 2𝛾)

 Γ(1 + 𝛾)2
(ℊ1(𝑥)ℊ

′(𝑥) + 2ℊ(𝑥)ℊ1
′ (𝑥))

−𝑎ℊ2(𝑥)ℊ2
′ (𝑥) − (𝛽 + 𝛼)ℊ2

′′(𝑥)   (21)

 

And so forth. 
Results and discussion 
In this section, the 3nd term approximated solution of the mKdV-Burger’s equation (19) is taken into 
consideration to investigate the memory effect of the fractional order 𝛾 on the wave solution. The 
parameters used for the numerical simulation are 𝑎 = 1, 𝛼 = −0.25, 𝛽 = 1.5, with the initial condition 

, 𝒴(𝑥, 0) = √1.5 (1 + Tanh(𝑥)) and the analytical solution for 𝛾 = 1 is 𝒴(𝑥, 𝑡) = √1.5 (1 + Tanh(𝑥 − 4𝑡)) 
[15,16]. 
 In Figure 1, and  Figure 2 the comparison of analytical solution 𝒴(𝑥, 𝑡) when (𝛾 = 1 ) with the first three 

approximations 𝒴1, 𝒴2 and 𝒴3 was illustrated in 3D  and 2D plots.  

 
Figure 1 The 3D surface comparison of the analytical solution 𝒴(𝑥, 𝑡) and the approximate solutions 
𝒴𝑘(𝑥, 𝑡)(𝑘 = 1,2,3) of the time-fractional modified KdV-Burger’s equation of order 𝛾 = 1, for 𝑥 ∈

[−3,3], 𝑎𝑛𝑑 𝑡 ≤ 0.5 

 
Figure 2 The 2D curves comparison of the analytical solution 𝒴(𝑥, 𝑡) and the approximate solutions 

𝒴𝑘(𝑥, 𝑡)(𝑘 = 1,2,3) of the time-fractional modified KdV-Burgers equation of order 𝛾 = 1, for 𝑥 ∈ [−5,5], 
and 𝑡 = 0.5, 0.4, 0.25, 0.01. (respectively). 
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By observation, those graphs demonstrate the convergent of the approximate solutions to the exact 
solution as the time decrease, in which they meet perfectly as 𝑡 ≤ 0.01. In order to further examine the 
effect of the fractional order 𝛾, Figure 3 exhibits the behavior of the exact solution 𝑢(𝑥, 𝑡) and the 

approximate solution 𝑢3(𝑥, 𝑡) at time value 0.25, in which the approximate solution in the third subgraph 
of Figure 2 has its verge on both converging and diverging to the exact one.  

 
Figure 3 The 2D curve comparison of the analytical solution 𝒴(𝑥, 𝑡) and the approximate solution 

𝒴3(𝑥, 𝑡) when 𝛾 = 1. Along with the effect of the fractional order 𝛾 = 0.75, 0.8, 0.9 on 𝒴3(𝑥, 𝑡). 

It is clearly that in Figure 3 the approximate solution meets the analytical solution at the end of 𝑥 domain, 
but shows some wiggles as the space values approaches zero. Also, the time fractional order has the 
impact on converging of the approximate solution as 𝛾 tends to the integer order. 
Further, for the purpose of a detailed examination of the RPSM’s efficiency, Figure 4 provides the 3D 
graphical display of the absolute error, observing its enlargement around the grid point 𝑥 = 0 as the 
time tends to larger values. The 2D graph emphasizes this observation and proves it.  

 

Figure 4 The 3D surface absolute error surface for 𝛾 = 1, and 𝑥 ∈ [−5,5], 𝑡 ≤ 0.5, and the 2D absolute 

error for 𝑥 = 0, 𝑡 ∈ [0,0.5]. 

Table 1 summarizes a numerical comparison for time 𝑡 ≤ 0.2 and 𝑥 = 5 where the absolute error at its 
minimum as shown the in the left subgraph in Figure 4. The absolute error values affirm that as time 
increases the error increase and the series solution diverges. 

Table 1 The comparison of the analytical solution 𝒴(𝑥, 𝑡) and 𝒴3(𝑥, 𝑡) for 𝛾 = 1, 𝑡 ≤ 0.2, and 𝑥 = 5. 

𝒕 𝒖(𝒙, 𝒕) 𝒖𝟑(𝒙, 𝒕) Absolute Error 

0 2.44938 2.44938 0. 

0.05 2.44932 2.44935 3.01× 10-5 

0.1 2.44924 2.44932 8.17× 10-5 

0.15 2.44912 2.44929 1.67× 10-4 

0.2 2.44894 2.44924 3.05× 10-4 

Conclusion 
In this study, the method of RPS was successfully employed to obtain the approximate solution of the 
time-fractional modified KdV-Burger’s equation. The approximate solution was presented in a form of 
a power series method that converges rapidly despite its radius of convergence and the complexity of 
the symbolic computations. The numerical investigation emphasizes the efficiency, applicability, and 
generality of applying the RPSM for such IVPs. 
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