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Abstract:

This study examines the usage of the residual power series method (RPSM) to numerically investigate
the solution of the time-fractional modified KdV-Burger’s equation in the Caputo’s sense. The reliability
and the efficiency of the method were demonstrated using 2D and 3D illustrations as well as error. The
obtained results have indicated the potency of the RPSM for such initial values problems.
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Introduction

In the last decade, the exploration of memory effect, heredity properties and non-local behaviours of
mathematical models in various disciplines and fields of science, has gained a tremendous attention
among researches. Indeed, the fractional partial differential equations (FPDEs), which is a combination
of partial differential equations (PDEs) and fractional calculus, provide a clear description of the interplay
between the nonlinearity characteristic and the non-integer order of the derivative involved. Further,
wide range of physical phenomena, engineering, finance, and even social sciences with memory are
modelled using FPDEs [1,2].

Moreover, numerical and semi-analytical methods were utilized extensively, of late, to construct the
approximate solutions of FPDEs, among these methods, the new transform method (ITM) and the
residual power series transform method (RPSTM) [3], Laplace residual power series technique [4], the
rational non-polynomial splines [5], The Homotopy perturbation transform method (HPTM) and the
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Yang transform decomposition method (YTDM) [6], and lastly but not last, the New Local Fractional
Mohand—Adomian Decomposition[7]. In study [8], Abu Arqub was the first to establish the RPSM to
solve fuzzy differential equations of second order. This method is composed of Taylor’s series and the
residual error function, afterwards it was developed to a new alogarithm that is effiecintly applied on
non-linear higher intial value (IVPs) and boundary value problems (BVPs) to construct power series
solutions [9—-11].
Many studies have empoyed the RPSM for obtaining the approximate analytical soltions of
FPDEs[4,12], El-Ajou et. al. [13] utlized the method to seek the explicit solutions of time-space fractional
KdV-burgers equation, on the other hand, the advatage of appling an integral transform with RPSM was
estaplished in a recent study by Igbal et. al. [14] in which they have used it to obtain the semi-analytical
solutions to fractional modified KdV equation an coupled Burger’s equations along with another well-
known lterative method.
In this research article, we aim to investigate the applicability, and efficiency of the RPSM on
constructing the semi-analytical solution of the time-fractional modified Korteweg-de Vries Burger’s
equation (mKdV-Burger’s), in the Caputo’ sense, of the form:

DIY + al?0,Y + @ 0 Y + B0, Y =0, XERt>00<y<1 D
Subjected to the IC:

Y(x,0) = go(x) @3]

where Y(x,t) is the wave function, of time and space, in which |Y(x,t)| approaches zero, as x and t
are both tending to negative infinity .The notations, a, a;,and B, are arbitrary real constants, such that
a,a, B +0,and a < 0 , to be more specific, a is the coefficient of the nonlinear term, a governs the
dispersion, and g is the coefficient of dissipation. Plus, in which x € [0, ) the initial condition function
is analytic. The time-fractional mKdV-Burgers is a general frame work for special case by setting g =
0,a=0,=a=0,a=a=0a=8=0 and a=8 =a =0, equation (1) is reduced to the Modified
Korteweg-de Vries equation (mKdV), the modified Burgers equation, the nonlinear advection equation,
the diffusion equation, the linear dispersive equation, and the advection equation (respectively) of time
fractional order [15-17].
The current article is outlined in the following way, in the section 1, most influential and fundamental
concepts of fractional calculus were provided along with the essential definitions of the method of our
consideration. In Section 0, the RPSM was employed on the general form of the time-fractional modified
KdV-Burger's equations (1) and (2). A detailed interpretation of the numerical simulation on the effect
of the fractional derivative was demonstrated in section 4. Finally, the merits and eligibility of the method
are given as a brief conclusion in section 5.
Basic Concepts and Representation
In this section, the essential concepts, definitions, theorems, as well as results used in the study are
fully addressed below [1,2,9-12].
Definition 1. The Riemann-Liouville (R-L) operator with fractional order 1 > y > 0 of a function g in the
space C, ,u = —1, is defined as:

1 t
mﬂﬂ=ﬁﬁ£0—ﬂ%WﬁM% y>0,t>0 3)

where J%g(t) = g(t),and I'(y) = fooo v 1le d1.
Definition 2. The fractional derivative of order y in the Caputo sense, of a function g, is

( 1 ¢t
Jrrgm(e) = —f -0 VgMW(t)dr, tr>0n—-1<y<n
Y = F(]/) 0
DY g(t) = . )
d"g(®) .
dem ' 4
We provide, below, some useful properties on the R-L operator and the Caputo derivative:
1. JVe=——1t¥
r(y+1)
2. JJEgt) =g*g(t) = gPJ7g()
_ Ty+1) +
3. JUr= F(a+y+1) ey
4. If CaconstantDYC =0,
5. D't =0, m<y
yim _ r(m+1) m-y
6. D't P —— ,mz=y.
Definition 3. The Caputo time-fractional operator of order y of Y(x, t) is given by,
D/Y(x,t) =aY(x,t) = ;It(t —v)m'y'lmdv m—-1<y<m (5)
t ’ t ’ rm-vy)J, atm ’ 4
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and that D{*Y (x,t) = am;/tfrf't), m € N.

Definition 4. A fractional power series expansion (FPS) at t = t, is given by,

GoC) + g1 (€ = 1) + GalO(E = £+ = ) gt = t)™

,0<sm—-1<as<mtz=t, (6)
Where g,,(x)(m = 0,1,2, ...) is the coefficients of the series.
Definition 5. (See [1,12]). The expansion of Y(x,t) at t, of an FPS is given by:

Y@, t) = Z gm ()t — t)™ = Z DY (x, t0)/T(my + 1) (t — )™,
m=0 m=0
0<m-1<y<x€elty,<t<ty+R (7

where D" Y(x,t) for, m =0,1,2,....is continuous on the rectangular I x (¢, t, + R), and R is the
radius of convergence. The formulain (7) is the Generalized Taylor Series. Note that if y = 1,the formula
in equation (7) gives the classical Taylor series.
RPSM for the Modified KdV-Burger’s Equation
In this section, we are applying the RPSM to the time-fractional modified KdV-Burger's equations (1)
and (2). According to El-Ajou et. al[12], and by the use of equation (7), the solution of (1) can be
expressed in a series form as:

[*3) my
Y, 0) = 7;) Gm(x) Ta+my) (8)
And approximate solution of the ki order of equation (8), is:
k
my
Ye(x,0) = Z Gm(x) T +my) €C)

m=0
since Y(x, t) holds the IC equation (2) Y(x,0) = g,(x) = g¢(x), then equation (9) could be rewritten as:
k
my
Yl 0) = g() + Zl 9100 T T
=

Where 0<y<1, x€l,t>0,k=123 .., (m=012,..,k).
To compute the coefficients g,,(x), the residual function for the KdV-Burger’s equations (1) is defined
by:

(10)

Res(x,t) = 0/ Y(x, ) + aY(x, )20, Y (x, £) + ady Y (x, t) + B, Y (x, 1) (11)
And the kt"residual function for k = 1,2, ... is:
Resi(x,t) = 0] Yy (x, 1) + aY (x, )20, Ype (4, 1) + @0 1 Ype (4, 1) + By Ype (1, 1), (12)

In which Res(x,t) = 0 and that, Res,(x,t) approaches Res(x,t) as k tends to infinity, vx € I,t > 0.
Eventually, D;YRes(x,t) =0, D;YRes(x,0) = DY Res;(x,0) =0 ,(n=0,1,..,k) (for further detailed
explanation see [12,18]).

when k = 1 equations (10), and (12) become:

1 my Y
Yi(x,t) =gx) + Zl Gm(x) T +my) =g(x) + g4 (x)m (13)
m=
And,
Res, (x: t) = agli‘h + aylzaxyl + aax,x,xyl + ,Bax,xyl (12)
Substituting equation (13) into Re.s; (x,0) = 0, and solving for the unknown g, (x), to get:
g1(x) = —ag(x)’g(x) — a;¢"" (x) — B1g" (x) (15)
When k = 2, we get:
2 my tY t2y
= - = J— - 1
Y0,t) = g0) + mzlgm(x) T R ORI e SO S D)
And,
Res,(x,t) = ag,{yz + ayzzaxyz + aax,x,xyz +p ax,xyz 17)
Substituting equation (16) into D) Re.s,(x,0) = 0, we obtain:
g2(x) = —ag(x)g,()g' (x) — a g(x)?g1(x) — agy"(x) — fg; (x) (18)

When k = 3, to yield:
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3 tmy
Ys(x,t) = g(x) + nZl Gm(x) Ta+my)
tY 2y t3Y
=gx)+ gﬂ(@ﬁ"‘ gﬁ(x)l"(TZy)-l_ gs(x)m (19)
And the residual function is
R653 (X, t) = ag/y3 + aySZaxyS + aax,x,xyS + ﬁ ax,xyS (20)
By the use of thyiRes3 = 0, the coefficient g;(x) is given by:
ra+2
g3(x) = —2ag(x)g,(x)g'(x) — ag,(x) F((l—ﬂgl (91(0)g' () + 29(x)g1(x))
—ag?(x)gy,(x) — (B + a)g5 (x) (21)

And so forth.

Results and discussion

In this section, the 3™ term approximated solution of the mKdV-Burger’'s equation (19) is taken into
consideration to investigate the memory effect of the fractional order y on the wave solution. The
parameters used for the numerical simulation are a = 1, a = —0.25, 8 = 1.5, with the initial condition
,Y(x,0) = V1.5 (1 4+ Tanh(x)) and the analytical solution for y = 1 is Y(x,t) = V1.5 (1 + Tanh(x — 4t))
[15,16].

In Figure 1, and Figure 2 the comparison of analytical solution Y (x, t) when (y = 1) with the first three
approximations Y,, Y, and Y5 was illustrated in 3D and 2D plots.

= Y(x, f)
= Yix, t]
u Ya(x, t
= Ya(x, t]

Figure 1 The 3D surface comparison of the analytical solution Y (x, t) and the approximate solutions
Y (x, ) (k = 1,2,3) of the time-fractional modified KdV-Burger’'s equation of order y = 1, for x €
[-3,3],and t < 0.5

25
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Figure 2 The 2D curves comparison of the analytical solution Y(x, t) and the approximate solutions
Y (x, t)(k = 1,2,3) of the time-fractional modified KdV-Burgers equation of order y = 1, for x € [-5,5],
and t = 0.5, 0.4, 0.25,0.01. (respectively).
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By observation, those graphs demonstrate the convergent of the approximate solutions to the exact
solution as the time decrease, in which they meet perfectly as t < 0.01. In order to further examine the
effect of the fractional order y, Figure 3 exhibits the behavior of the exact solution u(x,t) and the
approximate solution u;(x, t) at time value 0.25, in which the approximate solution in the third subgraph
of Figure 2 has its verge on both converging and diverging to the exact one.

0.25

ulx,t)

Figure 3 The 2D curve comparison of the analytical solution Y(x, t) and the approximate solution
Y5 (x,t) when y = 1. Along with the effect of the fractional order y = 0.75,0.8,0.9 on Y5 (x, t).

Itis clearly that in Figure 3 the approximate solution meets the analytical solution at the end of x domain,
but shows some wiggles as the space values approaches zero. Also, the time fractional order has the
impact on converging of the approximate solution as y tends to the integer order.

Further, for the purpose of a detailed examination of the RPSM’s efficiency, Figure 4 provides the 3D
graphical display of the absolute error, observing its enlargement around the grid point x = 0 as the
time tends to larger values. The 2D graph emphasizes this observation and proves it.

04,

o 2o o o o
Absolute Error
o o o
o a o g
- \
o =3 o
o M

Figure 4 The 3D surface absolute error surface for y = 1, and x € [-5,5],t < 0.5, and the 2D absolute
error forx =0, t € [0,0.5].

Table 1 summarizes a numerical comparison for time t < 0.2 and x = 5 where the absolute error at its
minimum as shown the in the left subgraph in Figure 4. The absolute error values affirm that as time
increases the error increase and the series solution diverges.

Table 1 The comparison of the analytical solution Y(x,t) and Y;(x,t) fory =1,t < 0.2, and x = 5.

t | u(x,t) | us(x,t) | Absolute Error
0 | 244938 | 2.44938 0.
0.05 | 2.44932 | 2.44935 3.01x 10-5
0.1 | 2.44924 | 2.44932 8.17x 10-5
0.15 | 2.44912 | 2.44929 1.67x 10-4
0.2 | 2.44894 | 2.44924 3.05x 10-4

Conclusion

In this study, the method of RPS was successfully employed to obtain the approximate solution of the
time-fractional modified KdV-Burger’s equation. The approximate solution was presented in a form of
a power series method that converges rapidly despite its radius of convergence and the complexity of
the symbolic computations. The numerical investigation emphasizes the efficiency, applicability, and
generality of applying the RPSM for such IVPs.
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