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Abstract:  

This scientific paper addresses the study of numerical solutions for Volterra integral equations using 
second-order and fourth-order Runge-Kutta methods. These equations appear in various fields such as 
physics, engineering, chemistry, and medical sciences, where it is difficult to obtain analytical and 
accurate solutions. The Volterra integral equation is transformed into a first-order or second-order 
differential equation depending on the nature of the equation, after which the Runge-Kutta method is 
applied. The results show that the use of the Runge-Kutta method provides accurate numerical 
solutions for Volterra integral equations. Numerical solutions using Runge-Kutta of different orders were 
compared, and it was clear that the numerical solution using the fourth-order Runge-Kutta method is 
more accurate than that using the second-order Runge-Kutta method, with results presented using 
MATLAB software. The study demonstrates that the Runge-Kutta method is an effective tool for solving 
Volterra integral equations. 
 
Keywords: Volterra Integral Equations, Runge-Kutta second order method, Runge-Kutta classical 
method. 

 :الملخص
تتناول هذه الورقة العلمية دراسة الحلول العددية لمعادلات فولترا التكاملية باستخدام طرق رونج كوتا من الرتبة الثانية ومن 

وتظهر هذه المعادلات في مجالات متعددة مثل الفيزياء والهندسة والكيمياء والعلوم الطبية حيت انه من  الرتبة الرابعة،
ول تحليلية ودقيقة لها. يتم تحويل معادلة فولترا التكاملية الي معادلة تفاضلية من الرتبة الاولي او الصعب الحصول على حل

من الرتبة الثانية علي حسب طبيعة المعادلة تم يتم تطبيق طريقة رونج كوتا عليها. تظهر النتائج أن استخدام طريقة رونج 
كاملية. تم مقارنة الحلول العددية باستخدام رونج كوتا من رتب مختلفة كوتا يوفر حلولاا عددية دقيقة لمعادلات فولترا الت

وكان واضحا أن الحل العددي باستخدام رونج كوتا من الرتبة الرابعة أدق من رونج كوتا من الرتبة الثانية وتم عرض 
 .معادلات فولترا التكاملية تظُهر الدراسة أن طريقة رونج كوتا هي أداة فعالة لحل النتائج باستخدام برنامج الماثلات.

                                        
 .طريقة رونج كوتا الكلاسيكية، طريقة رونج كوتا من الرتبة الثانية، معادلة فوليترا التكاملية الكلمات المفتاحية:
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 :المقدمة
لتي تظهر في العديد من التطبيقات العلمية والهندسية. تعد معادلات فولتيرا التكاملية واحدة من النماذج الرياضية المهمة ا     

تتميز هذه المعادلات بكونها تحتوي على حدود تكامل على هيئة متغيرات. ونظراا لتعقيد معادلات فولتيرا وصعوبة الحصول 
حلها. تعتمد الحلول على حلول تحليلية دقيقة لها في العديد من التطبيقات لذلك أصبحت الطرق العددية أداة أساسية وفعالة ل

العددية لمعادلات فولتيرا التكاملية على تقنيات متنوعة من أبرزها طرق التكامل العددي مثل قاعدة سمبسون وطريقة شبه 
كوتا، تهدف هذه الأساليب إلى تقريب الحلول بدقة وكفاءة.  –المنحرف، إضافة إلى الطرق التكرارية مثل طريقة رونج 

كوتا ذات الرتبة الثانية )أويلر المعدلة( وطريقة رونج  –سليط الضوء على كيفية تطبيق طريقة رونج وفي هذا الورقة سيتم ت
لحل معادلة  كوتا ذات الرتبة الرابعة )الكلاسيكية( في حل معادلة فولتيرا التكاملية مع مقارنة فعالية دقة كل طريقة. –

م بإعادة صياغة المعادلة على شكل معادلة تفاضلية لذا سوف يتم التطرق كوتا يت –فولتيرا التكاملية باستخدام طريقة رونج 

 إلى كيفية تحويل معادلة فولتيرا التكاملية إلى معادلة تفاضلية.
 :Integral Equationلمعادلة التكاملية ا

رة العامة للمعادلة داخل وخارج علامة التكامل، وتكون الصو 𝒖(𝒙)هي المعادلة التي تظهر فيها الدالة المجهولة      
 التكاملية:

𝑢(𝑥) = 𝑓(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                      
𝛽(𝑥)

𝛼(𝑥)

 

 :حيث أن
1. 𝑓(𝑥)  .دالة معلومة 
2. 𝑘(𝑥, 𝑡)  دالة معلومة بدلالة متغيرين𝑡, 𝑥 .وتسمى نواة المعادلة التكاملية 

3. 𝛽(x), α(x) ات او كلاهما.حدود التكامل وتكون إما ثوابت أو متغير 
4. 𝑢(𝑥) .دالة مجهولة تظهر داخل علامة التكامل، وقد تظهر خارج علامة التكامل أيضا 
5. 𝜆 .عدد حقيقي 

 :Volterra Integral Equationsمعادلة فولتيرا التكاملية 
 𝑎التكامل من  هي المعادلة التي تكون فيها حدود التكامل متغيرات أو على الأقل أحداهما متغير، فمثلا تكون حدود     
 والصيغة العامة لمعادلة فولتيرا التكاملية تكون كما يلي:  𝑥 إلى

∅(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                          (1)   
𝑥

𝑎

 

(𝑥)∅وتنقسم إلى نوعين، عندما نعوض  =  الأول:( نحصل على معادلة فولتيرا التكاملية من النوع 1في المعادلة ) 0

𝑓(𝑥) = 𝜆∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                                                   
𝑥

𝑎

 

(𝑥)∅أما عندما نعوض  =  ( نحصل على معادلة فولتيرا التكاملية من النوع الثاني:1في المعادلة ) 1

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡                                 
𝑥

𝑎

 

  :Runge – Kutta Methodsكوتا  –طرق رونج 
ا لحل المعادلات التفاضلية، حيث توفر حلولاا عالية الدقة للمعادلات       ا وأكثرها شيوعا تعد من أكثر الطرق استخداما

 التفاضلية دون الحاجة إلى حساب المشتقات العليا كما في طريقة تايلور.
 للمعادلة: 𝑠كوتا من المرحلة  –والصورة العامة لطريقة رونج 

𝑦′ = 𝑓(𝑥, 𝑦)               ;         𝑦(𝑥0) = 𝑦0 
 وتعرف كالآتي:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑏𝑖𝑘𝑖                                

𝑘𝑖 = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ∑𝑎𝑖𝑗𝑘𝑗

𝑠

𝑗=1

)

𝑖 = 1,2,3,4, … , 𝑠                                   }
 
 

 
 

                                (1) 

 مع تحقق شرط الصف:

𝑐𝑖 =∑𝑎𝑖𝑗          ;          𝑖 = 1,2, … , 𝑠

𝑠

𝑗=1
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كوتا بالاعتماد على الرتبة، حيث توجد الصيغة ذات الرتبة الثانية أو الثالثة أو  –توجد صيغ مختلفة لطريقة رونج     
كوتا من الرتبتين الثانية والرابعة نظراا لدقتهما في إيجاد  –ابعة أو الخامسة أو...، سيتم التركيز على طريقة رونج الر

الحلول، مع التركيز على المقارنة بينهما من حيث الأداء والدقة والكفاءة، ومدى تفوق إحدى الطريقتين على الأخرى في 
 فعلي.تقليل الخطأ وتحقيق تقارب أسرع للحل ال

 كوتا من الرتبة الثانية: –طريقة رونج 
 كوتا من الرتبة الثانية كالآتي: –تعرف طريقة رونج 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑘1 + 𝑘2)      

                                               𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)                                
𝑘2 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘1ℎ) 

 كوتا من الرتبة الرابعة)الكلاسيكية(:  –طريقة رونج 
 كوتا من الرتبة الرابعة كالآتي: –وتعرف طريقة رونج 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛) 

𝑘2 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1) 

𝑘3 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2) 

𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3) 
 .كوتا الكلاسيكية أو التقليدية –وتسمى بطريقة رونج 

 تحويل معادلة فولتيرا التكاملية إلى مسألة قيمة ابتدائية:
نقوم بتفاضل طرفي المعادلة التكاملية إلى أن لتحويل معادلات فولتيرا التكاملية إلى مسألة قيمة ابتدائية مكافئة سوف      

 :يتم التخلص من علامة التكامل وسوف نحتاج إلى تطبيق قاعدة ليبنيز التي يمكن تعريفها كما يلي
 :Leibniz Ruleقاعدة ليبنيز 

 قاعدة ليبنيز تعطى كالتالي:

𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝑡)𝑑𝑡 = 𝐺(𝑥, 𝛽(𝑥))

𝑑𝛽

𝑑𝑥
− 𝐺(𝑥, 𝛼(𝑥))

𝑑𝛼

𝑑𝑥
+ ∫

𝛿𝐺

𝛿𝑥
𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)

𝛽(𝑥)

𝛼(𝑥)

 

 حيث أن:

𝐺(𝑥, 𝑡) و
𝜕𝐺

𝜕𝑥
𝑎دوال متصلة في المنطقة المستطيلة    ≤ 𝑥 ≤ 𝑏 و𝑡0 ≤ 𝑡 ≤ 𝑡1  وحدود التكامل𝛼(𝑥) و𝛽(𝑥)  هي

𝑎دوال لها مشتقاتها المتصلة داخل الفترة < 𝑥 < 𝑏 .   
 ية لحل معادلة فولتيرا التكاملية:طريقة رونج كوتا من الرتبة الثان

( هي طريقة عددية لحل المعادلات التفاضلية Order ndKutta 2-Rungeطريقة رونج كوتا من الرتبة الثانية )     
. ولحل معادلة فولتيرا التكاملية باستخدام طريقة رونج كوتا من الرتبة الثانية، يتم تحويل RK2العادية ويرمز لها بالرمز 

ة التكاملية إلى معادلة تفاضلية مكافئة. ثم نطبق طريقة رونج كوتا على المعادلة التفاضلية الناتجة للحصول على المعادل
 الحل العددي لمعادلة فولتيرا التكاملية.

 كوتا من الرتبة الرابعة لحل معادلة فولتيرا التكاملية: –طريقة رونج 
( إحدى أشهر طرق التحليل العددي لحل Order thKutta 4-Rungeكوتا من الرتبة الرابعة ) –تعد طريقة رونج      

يمكن استخدام هذه الطريقة لحل معادلة فولتيرا التكاملية من خلال  RK4المعادلات التفاضلية العادية ويرمز لها بالرمز 
 تحويلها إلى معادلة تفاضلية مكافئة، ثم تطبق خطوات الحل العددي.

 (:1) مثـــــال
 :كوتا أوجد حل معادلة فولتيرا التكاملية الآتية –رونج  باستخدام طرق

𝑢(𝑥) = 1 + 𝑥𝑒𝑥 −∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0

 

 :الحـــــل
 :𝑥بتحويل المعادلة التكاملية إلى مسألة قيمة ابتدائية مكافئة عن طريق اشتقاق طرفي المعادلة التكاملية بالنسبة إلى 

𝑑

𝑑𝑥
𝑢(𝑥) =

𝑑

𝑑𝑥
(1) +

𝑑

𝑑𝑥
𝑥𝑒𝑥 −

𝑑

𝑑𝑥
∫ 𝑡𝑢(𝑢)𝑑𝑡
𝑥

0
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 :وبتطبيق قاعدة ليبنيز نحصل على المعادلة التفاضلية الآتية
𝑢′(𝑥) = 𝑥𝑒𝑥 + 𝑒𝑥 − 𝑥𝑢(𝑥) 

𝑥للحصول على الشروط الابتدائية نضع  =  :𝑢(𝑥)في المعادلة  0

𝑢(0) = 1 + (0)𝑒0 −∫ 𝑡𝑢(𝑡)𝑑𝑡 = 1
0

0

 

 تدائية المكافئة كالآتي:وتكون مسألة القيمة الاب
𝑢′(𝑥) = 𝑥𝑒𝑥 + 𝑒𝑥 − 𝑥𝑢(𝑥),                  𝑢(0) = 1 

 :كوتا حيث أن –بتطبيق طرق رونج 
0 ≤ 𝑥 ≤ 1     ,        ℎ = 0.1 

 :(1يمكن الحصول على النتائج العددية من الجدول ) (1)البرنامج وبتطبيق  
 

 1ا للمثال كوت–المقارنة بين طريقتي رونج  :(1جدول )
 

𝒙 𝒆_𝒓𝒌𝟐 𝒆_𝒓𝒌𝟒 

0.000000 0.0000000000 0.0000000000 

0.100000 0.0001134824 0.0000000466 

0.200000 0.0002657827 0.0000001125 

0.300000 0.0004609834 0.0000002023 

0.400000 0.0007030109 0.0000003219 

0.500000 0.0009956564 0.0000004788 

0.600000 0.0013426247 0.0000006829 

0.700000 0.0017476129 0.0000009466 

0.800000 0.0022144140 0.0000012853 

0.900000 0.0027470441 0.0000017184 
 

clear; 

n=10; h=1/n; 

x_end=1; x0=0; u0=1; 

%f=@(x,u)(-u); 

f=@(x,u)(x*exp(x)+exp(x)-x*u); 

%RK2 and RK4 

x=x0:h:x_end; 

u_rk2(1)=u0; 

u_rk4(1)=u0; 

%u_Ex=exp(-x); 

u_Ex=exp(x); 

%solution with RK2 

for i=1:n 

    k1=f(x(i),u_rk2(i)); 

    k2=f(x(i)+h,u_rk2(i)+h*k1); 

    u_rk2(i+1)=u_rk2(i)+(h/2)*(k1+k2); 

end 

%solution with RK4 

for i=1:n 

    k1=f(x(i),u_rk4(i)); 

    k2=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k1); 

    k3=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k2); 

    k4=f(x(i)+h,u_rk4(i)+h*k3); 

    u_rk4(i+1)=u_rk4(i)+(h/6)*(k1+2*(k2+k3)+k4); 

end 

%Error Solution 

e_rk2=abs(u_rk2-u_Ex); e_rk4=abs(u_rk4-u_Ex); 

%plotting the results 

plot(x,u_rk2,'rd-','linewidth',1.5); hold on 

plot(x,u_rk4,'b-','linewidth',1.5); hold on 

plot(x,u_Ex,'k--','linewidth',1.5); grid  

for i=1:n 

    fprintf('%f\t%.10f\t%.10f\n',x(i),e_rk2(i),e_rk4(i)) 
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end 

ylabel('u(x)','fontsize',16) 

xlabel('x','fontsize',16) 

axis([0 1 0 2]); 

legend('RK2','RK4','Exact Solution') 

title('Solutions of u(x) Using RK2 and RK4','fontsize',12) 

 (1البرنامج )
 

 
 

 1كوتا على مثال -الثمثيل البياني لنتائج تطبيق طريقتي رونج :(1شكل )
 

 (:2)مثـــــال 
 :كوتا –أوجد حل المعادلة التكاملية الآتية باستخدام طرق رونج 

𝑢(𝑥) = −𝑥 + 𝑡𝑎𝑛(𝑥) + 𝑡𝑎𝑛2(𝑥) − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

 :الحـــــل
 :𝑥بتحويل المعادلة التكاملية إلى مسألة قيمة ابتدائية عن طريق اشتقاق طرفي المعادلة التكاملية بالنسبة إلى 
𝑑

𝑑𝑥
𝑢(𝑥) = −

𝑑

𝑑𝑥
𝑥 +

𝑑

𝑑𝑥
𝑡𝑎𝑛(𝑥) +

𝑑

𝑑𝑥
𝑡𝑎𝑛2(𝑥) −

𝑑

𝑑𝑥
∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

 :وبتطبيق قاعدة ليبنيز نحصل على المعادلة التكاملية الآتية
𝑢′(𝑥) = −1 + 𝑠𝑒𝑐2(𝑥) + 2𝑡𝑎𝑛(𝑥)𝑠𝑒𝑐2(𝑥) − 𝑢(𝑥) 

𝑥للحصول على الشروط الابتدائية نضع  =  :𝑢(𝑥)في المعادلة  0

𝑢(0) = −0 + 𝑡𝑎𝑛(0) + 𝑡𝑎𝑛2(0) − ∫ 𝑢(𝑡)𝑑𝑡
0

0

= 0 

 ة الابتدائية الناتجة كالآتي:وتكون مسألة القيم
𝑢′(𝑥) = −1 + 𝑠𝑒𝑐2(𝑥) + 2𝑡𝑎𝑛(𝑥)𝑠𝑒𝑐2(𝑥) − 𝑢(𝑥),    𝑢(0) = 0 

 :كوتا حيث أن –بتطبيق طرق رونج 
0 ≤ 𝑥 ≤ 1         ℎ = 0.1 

 .( بتطبيق البرنامج2نحصل على النتائج العددية في الجدول )
 

 2مثال كوتا لل–المقارنة بين طريقتي رونج  :(2جدول )
𝒙 𝒆_𝒓𝒌𝟐 𝒆_𝒓𝒌𝟒 

0.000000 0.0000000000 0.0000000000 

0.100000 0.0005707805 0.0000005527 

0.200000 0.0012684536 0.0000012784 

0.300000 0.0021674715 0.0000023075 

0.400000 0.0033908220 0.0000038775 

0.500000 0.0051486870 0.0000064465 

0.600000 0.0078178804 0.0000109578 

0.700000 0.0121147422 0.0000195095 

0.800000 0.0195013181 0.0000372230 

0.900000 0.0332358673 0.0000781183 
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clear; 

n=10; h=1/n; 

x_end=1; x0=0; %u0=1; 

u0=0; 

%f=@(x,u)(-u); 

%f=@(x,u)(x*exp(x)+exp(x)-x*u); 

%f=@(x,u)(-sin(x)+cos(x)-u); 

f=@(x,u)(-1+(sec(x))^2+2*tan(x)*(sec(x))^2-u); 

%RK2 and RK4 

x=x0:h:x_end; 

u_rk2(1)=u0; 

u_rk4(1)=u0; 

%u_Ex=exp(-x); 

%u_Ex=exp(x); 

%u_Ex=cos(x); 

u_Ex=(tan(x)).^2 ; 

%solution with RK2 

for i=1:n 

    k1=f(x(i),u_rk2(i)); 

    k2=f(x(i)+h,u_rk2(i)+h*k1); 

    u_rk2(i+1)=u_rk2(i)+(h/2)*(k1+k2); 

end 

%solution with RK4 

for i=1:n 

    k1=f(x(i),u_rk4(i)); 

    k2=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k1); 

    k3=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k2); 

    k4=f(x(i)+h,u_rk4(i)+h*k3); 

    u_rk4(i+1)=u_rk4(i)+(h/6)*(k1+2*(k2+k3)+k4); 

end 

%Error Solution 

e_rk2=abs(u_rk2-u_Ex); e_rk4=abs(u_rk4-u_Ex); 

%plotting the results 

plot(x,u_rk2,'rd-','linewidth',1.5); hold on 

plot(x,u_rk4,'b-','linewidth',1.5); hold on 

plot(x,u_Ex,'k--','linewidth',1.5); grid  

for i=1:n 

    fprintf('%f\t%.10f\t%.10f\n',x(i),e_rk2(i),e_rk4(i)) 

end 

ylabel('u(x)','fontsize',16) 

xlabel('x','fontsize',16) 

axis([0 1 0 2]); 

legend('RK2','RK4','Exact Solution') 

title('Solutions of u(x) Using RK2 and RK4','fontsize',12) 

 (2البرنامج )
 

 
 2كوتا على مثال -الثمثيل البياني لنتائج تطبيق طريقتي رونج :(2شكل )
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نلاحظ من الأمثلة السابقة عندما تم تحويل المعادلات التكاملية إلى معادلات تفاضلية مكافئة نتج عن ذلك معادلات     
عادلات التفاضلية الناتجة من كوتا، أما إذا كانت الم –تفاضلية من الرتبة الأولى، وتم حلها بسهولة باستخدام طرق   رونج 

الرتبة الثانية سنقوم بتحويلها إلى معادلات تفاضلية من الرتبة الأولى )أنظمة معادلات من الرتبة الأولى( حتى يسهل حلها 
 كوتا. –باستخدام طرق رونج 

 معادلات من الدرجة الثانية )أنظمة المعادلات(:
تفاضلية من الدرجة الثانية فإننا نحتاج إلى تحويل المعادلة التفاضلية من لتطبيق إحدى الطرق السابقة على معادلات      

 الدرجة الثانية إلى أنظمة من المعادلات التفاضلية من الدرجة الأولى.
 إذا كانت لدينا المعادلة التفاضلية الآتية:

𝑦′′ = 𝑔(𝑥, 𝑦, 𝑦′)        𝑦(𝑥0) = 𝑦0         𝑦
′(𝑥0) = 𝑦0

′ 
 :فإنه يمكن تحويلها إلى نظام المعادلات من الدرجة الأولى باستخدام الفرضية الآتية وتكون المعادلتين المكافئتين كالآتي

     𝑦′ = 𝑣                               𝑦(𝑥0) = 𝑦0     
𝑣′ = 𝑔(𝑥, 𝑦, 𝑣)                 𝑣(𝑥0) = 𝑦0

′ 

,𝑓(𝑥فتصبح  𝑣بـ ′𝑦فيها استبدال  والتي يتم 𝑦, 𝑣) .في الطرف الأيمن من المعادلة الأولى 
 وبناءا عليه تعرف طريقة رونج كوتا من الرتبة الثانية كالآتي:

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑘1 + 𝑘2) 

𝑣𝑛+1 = 𝑣𝑛 +
ℎ

2
(𝑚1 +𝑚2) 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)  
𝑘2 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘1)   

𝑚1 = 𝑔(𝑥𝑛, 𝑦𝑛)                                 
𝑚2 = 𝑔(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘1) 

 كوتا من الرتبة الرابعة كالآتي: –وكذلك يمكن تعريف طريقة رونج 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)   

𝑣𝑛+1 = 𝑣𝑛 +
ℎ

2
(𝑚1 + 2𝑚2 + 2𝑘3 + 𝑘4) 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)                                                           

𝑘2 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1)                                        

𝑘3 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2)                      

𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3)     
𝑚1 = 𝑔(𝑥𝑛, 𝑦𝑛)                                                                         

𝑚2 = 𝑔 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1)                                          

𝑚3 = 𝑔 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2)                       

𝑚4 = 𝑔(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3)    
,𝑣𝑛+1وبذلك نحصل على الحل للنظام السابق والذي يكون عبارة عن  𝑦𝑛+1  

 والمثال التالي يوضح ما سبق:
 (:3)مثـــــال 

 كوتا  –دام طرق رونج أوجد حل معادلة فولتيرا التكاملية باستخ

𝑢(𝑥) = 1 − 𝑥2 −∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

 

 الحـــــل
 :𝑥بتحويل المعادلة التكاملية إلى مسألة قيمة ابتدائية عن طريق اشتقاق طرفي المعادلة التكاملية بالنسبة إلى 

𝑑

𝑑𝑥
𝑢(𝑥) =

𝑑

𝑑𝑥
(1) −

𝑑

𝑑𝑥
𝑥2 −

𝑑

𝑑𝑥
∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
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 :وبتطبيق قاعدة ليبنيز نحصل على المعادلة التفاضلية الآتية 

𝑢′(𝑥) = −2𝑥 − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

 :للتخلص من علامة التكامل 𝑥وبالاشتقاق مرة أخرى بالنسبة إلى 
𝑑

𝑑𝑥
𝑢′(𝑥) = −

𝑑

𝑑𝑥
2𝑥 −

𝑑

𝑑𝑥
∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

 :لتفاضلية الآتيةبتطبيق قاعدة ليبنيز نحصل على المعادلة ا
𝑢′′(𝑥) = −2 − 𝑢(𝑥) 

𝑥يمكن الحصول على الشروط الابتدائية بوضع  = ,𝑢′(𝑥)في المعادلتين  0 𝑢(𝑥): 

𝑢(0) = 1 − 02 −∫ (0 − 𝑡)𝑢(𝑡)𝑑𝑡
0

0

= 1 

𝑢′(0) = −2(0) − ∫ 𝑢(𝑡)𝑑𝑡
0

0

= 0 

 وتكون مسألة القيمة الابتدائية المكافئة كالآتي:
𝑢′′(𝑥) = −2 − 𝑢(x),              𝑢(0) = 1,     𝑢′(0) = 0  

نلاحظ أن المعادلة الناتجة من الرتبة الثانية لذا من المناسب استبدال هذه المعادلة بأنظمة مكافئة من المعادلات من      
 الرتبة الأول.

 تكون المعادلتين المكافئتين كالتالي:
𝑢′(𝑥) = 𝑣,                              𝑢(0) = 1 
𝑣′ = −2 − 𝑢(x),                   𝑣(0) = 0 

 :كوتا بحيث أن –بتطبيق طرق رونج 
0 ≤ 𝑥 ≤ 1,              ℎ = 0.1 

 (:3( باستخدام البرنامج )3نحصل على نتائج الجدول )
 

 3كوتا للمثال –المقارنة بين طريقتي رونج  :(3جدول )
𝒙 𝒆_𝒓𝒌𝟐 𝒆_𝒓𝒌𝟒 

0.000000 0.0000000000 0.0000000000 

0.100000 0.0000124958 0.0000000042 

0.200000 0.0001247335 0.0000000582 

0.300000 0.0003348424 0.0000001612 

0.400000 0.0006389801 0.0000003114 

0.500000 0.0010313888 0.0000005058 

0.600000 0.0015044794 0.0000007409 

0.700000 0.0020489447 0.0000010120 

0.800000 0.0026538978 0.0000013136 

0.900000 0.0033070356 0.0000016398 

                             
clear; 

n=10; h=1/n; 

x_end=1; x0=0; 

u0=1; v0=0; 

f=@(x,u,v)(v); 

g=@(x,u,v)(-2-u); 

%RK2 and RK4 

x=x0:h:x_end; 

u_rk2(1)=u0; v_rk2(1)=v0; 

u_rk4(1)=u0; v_rk4(1)=v0; 

u_Ex=3.*cos(x)-2; 

%solution with RK2 

for i=1:n 

    k1=f(x(i),u_rk2(i),v_rk2(i)); 

    m1=g(x(i),u_rk2(i),v_rk2(i)); 
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    k2=f(x(i)+h,u_rk2(i)+h*k1,v_rk2(i)+h*m1); 

    m2=g(x(i)+h,u_rk2(i)+h*k1,v_rk2(i)+h*m1); 

    u_rk2(i+1)=u_rk2(i)+(h/2)*(k1+k2); 

    v_rk2(i+1)=v_rk2(i)+(h/2)*(m1+m2); 

end  

%solution with RK4 

for i=1:n 

    k1=f(x(i),u_rk4(i),v_rk4(i)); 

    m1=g(x(i),u_rk4(i),v_rk4(i)); 

    k2=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k1,v_rk4(i)+0.5*h*m1); 

    m2=g(x(i)+0.5*h,u_rk4(i)+0.5*h*k1,v_rk4(i)+0.5*h*m1); 

    k3=f(x(i)+0.5*h,u_rk4(i)+0.5*h*k2,v_rk4(i)+0.5*h*m2); 

    m3=g(x(i)+0.5*h,u_rk4(i)+0.5*h*k2,v_rk4(i)+0.5*h*m2); 

    k4=f(x(i)+h,u_rk4(i)+h*k3,v_rk4(i)+h*m3); 

    m4=g(x(i)+h,u_rk4(i)+h*k3,v_rk4(i)+h*m3); 

    u_rk4(i+1)=u_rk4(i)+(h/6)*(k1+2*(k2+k3)+k4); 

    v_rk4(i+1)=v_rk4(i)+(h/6)*(m1+2*(m2+m3)+m4); 

end 

%Error Solution 

e_rk2=abs(u_rk2-u_Ex); e_rk4=abs(u_rk4-u_Ex); 

%plotting the results 

plot(x,u_rk2,'rd-','linewidth',1.5); hold on; 

plot(x,u_rk4,'b-','linewidth',1.5); hold on; 

plot(x,u_Ex,'k--','linewidth',1.5); grid 

for i=1:n 

    fprintf('%f\t%.10f\t.10f\n',x(i),e_rk2(i),e_rk4(i)) 

end 

ylabel('u(x)','fontsize',16) 

xlabel('x','fontsize',16) 

axis([0 1 0 2]); 

legend('RK2','RK4','Exact Solution') 

title('Solution of u(x) Using RK2 and RK4 ','fontsize',12) 

 
 (3برنامج )

 

 
 3كوتا على مثال -ني لنتائج تطبيق طريقتي رونجالثمثيل البيا :(3شكل )

 لاحظ أن:ن
(RK4.أكثر دقة وفاعلية لحل معادلة فولتيرا التكاملية كما موضح في الجدول والرسم البيانية السابقيين ) 
 حليل النتائج:ت

امج الماتلاب على معادلة ( باستخدام برنRK4( والرابعة )RK2كوتا من الرتبة الثانية ) –بعد تطبيق طريقة رونج      
 فولتيرا التكاملية في الأمثلة السابقة أظهرت النتائج أن: 

(، فعند مقارنة النتائج العددية بالحل المضبوط من الجدول لوحظ أن RK2( أكثر دقة مقارنة بطريقة )RK4طريقة ) -
بياني تمت ملاحظة أن (. ومن خلال الرسم الRK2( كان أقل بكثير من طريقة )RK4مقدار الخطأ في طريقة )

( انحرافات RK2( قريب جداا من منحى الحل المضبوط، بينما يظهر منحى طريقة )RK4المنحنى الناتج عن طريقة )
 ملحوظة.

 ( في حل المعادلات للحصول على دقة عالية ونتائج عددية دقيقة. RK4وبناء على التحليل أعلاه، يوصى باستخدام ) -
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