
 

Afro-Asian Journal of Scientific Research (AAJSR) 

 العلميالمجلة الأفروآسيوية للبحث 
E-ISSN: 2959-6505 

Volume 3, Issue 4, 2025 
Page No: 253-258 

Website: https://aajsr.com/index.php/aajsr/index  
SJIFactor 2024: 5.028 ISI 2025: 0.915 ( معامل التأثير العربيAIF )2025 :0.76 

 

253 | Afro-Asian Journal of Scientific Research (AAJSR)  

A New Approach for Solving Linear Programming 
Problems with Uncertainty Coefficients 

       
Abdussalam Mohamed Khalifa1*, F. M. Hejaj2 

1,2Mathematics Department, Faculty of Education, Azzaytuna University, Tarhuna, Libya    

 

 الخطية ذات المعاملات غير يقينيةطريقة جديدة لحل مشكلة البرمجة 
 

  2فادية مفتاح حجاج، *1ةالسلام محمد خليف عبد
 ترهونة، ليبيا ،قسم الرياضيات، كلية التربية، جامعة الزيتونة1،2  

 
*Corresponding author: abmaabkhalifa@gmail.com 
 

Received: October 11, 2025 Accepted: December 22, 2025 Published: December 30, 2025 

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

Abstract:  

In this paper, this algorithmic solution based on rough interval coefficients for uncertainty parameters is 
developed using the lower and upper interval (LILP) and (UILP) approaches. We proposed method 
addresses the uncertainty (rough interval) Programming (RIP) problem, in which the coefficients of the 
objective function and constraints are characterized as uncertainty intervals. An algorithm gives an 
efficient decision support tool structure for solving linear programming problems characterized by 
uncertain data. It is shown that the solutions of the related crisp problems, namely the Upper Crisp 
Interval  linear  programming Problem (UIP(λ)) and the Lower Crisp Interval linear programming 
Problem (LIP(λ)), The solution of the (UIP(λ))  and (LIP(λ)) are depends on the value  of form limits of 
the interval solution of the RIP problem and its optimal solution, the solution of the (UIP(λ))  and (LIP(λ))    
are depends on the value ( λ)  which decision maker. The applicability of the proposed approach is 
verified through a numerical example. 
 
Keywords: Linear Programming Problem, Rough Interval, Optimal Solution. 

 :الملخص
في هذه البحث، تم تطوير نهج جديد لحل مشكلة البرمجة الخطية بمعاملات غير يقينية، وذلك باستخدام تجزئة الفترة 

ثم بعد ذلك يتم إنشاء مشكلتين وهما مشكلة ، الأخرى للفترة الدنيا للعدد الغامضوللفترة العليا  أحدهمفترتين  إلىالغامضة 
البرمجة الخطية ذات المعاملات العليا للعدد الغامض والأخرى مشكلة البرمجة الخطية ذات المعاملات الدنيا للعدد الغامض 

، المقترح يوفر قيمة يقينية يحددها متخذ القرار وفقًا لتفصيلاته وهذا النهج لمشكلة البرمجة الخطية بمعاملات غير يقينية.
وبعد حل تلك المشكلتين  لكل من مشكلة البرمجة الخطية ذات الفترة العليا ومشكلة البرمجة الخطية ذات الفترة الدنيا.

ضة من حل تلك المشكلتين ونشكل الحل الأمثل لمشكلة البرمجة الخطية ذات المعاملات الغام، باستخدام طريقة السمبليكس
حيث القيمة العليا للفترة هي الحل الأمثل لمشكلة البرمجة الخطية ذات المعاملات ، العليا والدنيا ويكون في صورة فترة

وقد تم ، العليا للعد الغامض والقيمة الدنيا هي الحل الأمثل لمشكلة البرمجة الخطية ذات المعاملات الدنيا للعدد الغامض
 كفاءة وقابلية تطبيق هذا المقترح من خلال مثال عددي توضيحي. التحقق من

 
 الحل الأمثل.، فترة تقريبية، مسألة البرمجة الخطية الكلمات المفتاحية:
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Introduction: 
     The theory of uncertainty parameters, originally introduced by (Pawlak, 1982)  provides a 
mathematical framework for handling indeterminacy, incompleteness  and uncertainty in data . Rough 
interval theory has since been known as an efficient tool for modeling imprecise information without 
requiring  preliminary and additional information about data . 
     To further develop the capability of indeterminacy  modeling, (Dubois & Prade, 1990)  combined the 
definitions  of rough interval and fuzzy sets, leading to the development of fuzzy rough interval. These 
mixture models have proven efficient in instead of imprecision  inherent in real data. therefore, many 
extensions and generalizations of rough interval and fuzzy sets,  have been proposed based on  logical 
different operators and approximation mechanisms in the direction of improve their computational 
power (Klir & Yuan, 2008).   
In parallel, the indeterminacy in optimization problems   it gets a lot  of attention, particularly of linear 
programming problems models with vague parameters. More than on study have addressed 
optimization  problems with  rough interval and fuzzy coefficients as a means of capturing indeterminacy 
of  objective functions and constraints (Chinneck &Ramadan, 2000: Moore,1979).     However, when 
the indeterminacy  is represented by rough intervals or fuzzy classical solution approaches become 
insufficient. 
     In this paper, we propose a novel algorithmic  approach to decide the optimal solution of  uncertainty 
linear programming problems in which the coefficients of the problem are expressed as rough intervals 
in objective function and constraints. The planned method depends on the construction of lower interval 
model and upper interval model that capture the uncertainty  in the problem parameters. This approach 
can give out as a practical and reliable decision support tool for addressing a wide range of optimization 
problems linking uncertainty  data. Also, it is demonstrated that the  optimal solutions obtained from the 
LILPP and UILPP  bound the feasible solution set and the optimal objective value of the RILPP. 
Problem formulation: 
Consider the rough  interval problem (𝑅𝐼𝑃):   

min 𝑓𝑅 = ∑[[𝑐𝑗
𝐿𝑈, 𝑐𝑗

𝑈𝑈]: [𝑐𝑗
𝐿𝐿 , 𝑐𝑗

𝑈𝐿]]𝑥𝑗
𝑅

𝑛

𝑗=1

 

                                        such that  

                                       ∑ [𝑎𝑖𝑗
𝐿𝑈, 𝑎𝑖𝑗

𝑈𝑈]: [𝑎𝑖𝑗
𝐿𝐿 , 𝑎𝑖𝑗

𝑈𝐿]]𝑥𝑗
𝑅 ≤𝑛

𝑗=1 [𝑏𝐿𝑈, 𝑏𝑖𝑗
𝑈𝑈]: [𝑏𝑖𝑗

𝐿𝐿 , 𝑏𝑖𝑗
𝑈𝐿]]     (1) 

  

            𝑥𝑗
𝑅 ≥ 0                                                                    (2)  

  
                                       𝑖 = 1,2, … 𝑚 

  
 and 𝑗 = 1,2, … 𝑛 

Definition 1: (Feasible solution)  

An element 𝑥  satisfying all the constraints (1) and (2) arecalled a feasible solution (Pandian & 
Natarajan, 2010a).  

Definition 2:(optimal Soltion) 

Let f(x) denote the objective functon. A feasible solution x∗ is  called an optimal solution if it gives the 

minimum value of f(x) in a minimization problem or the maximum value of f(x)) in a maximization 
problem, in all feasible solutions (Moore, 1979) 
Theorem 1: The  optimal solution of the  𝑅𝐼𝑃, we get from the solutions of the   two problems: 

    ( 1)  

𝑈𝐼𝑃      ∶  max 𝑓𝐼𝑈 = ∑ 𝑐𝑗
𝐼𝑈 𝑥𝑗

𝐼𝑈
𝑛

𝑗=1
  

Subject: 

                                                ∑  𝑎𝑖𝑗
𝐼𝑈𝑥𝐼

𝐼𝑈 ≤ 𝑏𝑖𝑗
𝐼𝑈𝑛

𝑖=1 ,  

                                                     𝑥𝑖
𝐼𝑈 ≥ 0 

We get  the optimal soltion  𝑥𝑖
∗𝐼𝑈  for the 𝑈𝐼𝑃. 

   (2)  

𝐿𝐼𝑃 ∶  max 𝑓𝐼𝐿 = ∑ 𝑐𝑖
𝐼𝐿 𝑥𝑖

𝐼𝐿
𝑛

𝐼=1
  

Subject: 

                                 ∑  𝑎𝑖𝑗
𝐼𝐿𝑥𝐼

𝐼𝐿 ≤ 𝑏𝑖𝑗
𝐼𝐿𝑛

𝑖=1 , j=1,2,....,m 

                                   𝑥𝑖
𝐼𝐿 ≥ 0 

We obtain the optimal solution xi
∗IL  for the UIP. 

proof: 
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Let for   𝑠 = {[𝑥𝐽
𝐿𝑈, 𝑥𝑗

𝑈𝑈]: [𝑥𝑗
𝐿𝐿 , 𝑥𝑗

𝑈𝐿]] , for all j  } be a rough interval feasible solution  𝑅𝐼𝑃 

Therefore, { [𝑥𝐽
𝐿𝑈, 𝑥𝑗

𝑈𝑈] , for all  j  }, {[𝑥𝑗
𝐿𝐿 , 𝑥𝑗

𝑈𝐿]], for all  j   are feasible solutions of the 

problems  𝑈𝐼𝑃 𝑎𝑛𝑑 𝐿𝐼𝑃
 
  
 
. 

Now, since        𝑥𝜆
∗𝑈, for all 𝜆 ∈ [𝑐𝑗

𝐿𝑈 , 𝑐𝑗
𝑈𝑈 ] and  𝑥𝜆

∗𝐿, for all 𝜆 ∈ [𝑐𝑗
𝐿𝐿 , 𝑐𝑗

𝑈𝐿 ]}, are optimal 

solutions of 𝑈𝐼𝑃 𝑎𝑛𝑑 𝐿𝐼𝑃 ,we have  

                                ∑ 𝑐𝑗
𝐼𝑈(𝜆) 𝑥𝑗

∗𝐼𝑈𝑛
𝑗=1 ≤ ∑ 𝑐(𝜆)𝑗

𝐼𝑈 𝑥𝑗
𝐼𝑈𝑛

𝑗=1    

                                    ∑  𝑎𝑖𝑗
𝐼𝑈  (𝜆)𝑥 ∗𝐼

𝐼𝑈≤ 𝑏𝑖𝑗
𝐼𝑈(𝜆)𝑛

𝑖=1 , 

                               And  

                                ∑ 𝑐𝑗
𝐼𝐿(𝜆) 𝑥𝑗

∗𝐼𝐿𝑛
𝑗=1 ≤ ∑ 𝑐(𝜆)𝑗

𝐼𝐿 𝑥𝑗
𝐼𝐿𝑛

𝑗=1   and  

                                   ∑  𝑎𝑖𝑗
𝐼𝐿 ≤ 𝑏𝑖𝑗

𝐼𝐿(𝜆)𝑛
𝑖=1  

With the condition  

𝑥𝑖𝑗
∗𝐼𝐿(𝜆) ≤ 𝑥𝑖𝑗

∗𝐼𝑈(𝜆) 

This implies that to  

[∑ 𝑐𝑗
𝐼𝐿(𝜆)𝑥𝑗

∗𝐼𝐿
𝑛

𝑗=1
: ∑ 𝑐𝑗

𝐼𝑈(𝜆) 𝑥𝑗
∗𝐼𝑈]

𝑛

𝑗=1
≤ [∑ 𝑐(𝜆)𝑗

𝐼𝐿 𝑥𝑗
𝐼𝑈

𝑛

𝑗=1
: ∑ 𝑐(𝜆)𝑗

𝐼𝑈 𝑥𝑗
𝐼𝑈]

𝑛

𝑗=1
 

we can conclude that the set [𝑥𝑗(𝜆),
∗𝐿 𝑥𝑗(𝜆),

∗𝑈 ] 
 
for all 𝜆  is a feasible solution of 𝑅𝐼𝑃(𝜆). 

Thus, the set of  intervals [𝑥𝑗(𝜆),
∗𝐿 𝑥𝑗(𝜆),

∗𝑈 ] 
 
 is an interval  optimal solution of the proble 𝑅𝐼𝑃(𝜆).   

Algorithm Solution: 
This algorithm  for finding an optimal solution for  RIP. The  algorithm  for the  procedure is as follows.   
1. Consider the rough interval linear  programming  problem 

 
𝑅𝐼𝐿𝑃.  

2. Formulate the UILP corresponding to the given RILP. 
3. convert the  𝑈𝐼𝐿𝑃 to the crisp upper  linear programming problem 𝐶𝑈𝐿𝑃(𝜆). 
4.     Finding the optimal solution inside a point in interval of coefficients of . 
5. We choose a parameter value 𝜆 = 𝜆0 ∈ [0,1], Then each interval coefficient of CULP is transformed 

into a crisp value as follows : 

𝑎𝑖𝑗(𝜆) = 𝑎𝑖𝑗
𝐿 + 𝜆(𝑎𝑖𝑗

𝑈 − 𝑎𝑖𝑗
𝐿 ), 𝑏𝑖𝑗(𝜆) = 𝑏𝑖𝑗

𝐿 + 𝜆(𝑏𝑖𝑗
𝑈 − 𝑏𝑖𝑗

𝐿 ) and  𝑐𝑖𝑗(𝜆) = 𝑐𝑖𝑗
𝐿 + 𝜆(𝑐𝑖𝑗

𝑈 − 𝑐𝑖𝑗
𝐿 ) 

 
6. we get the  Crisp Linear Programming Model at an Interior Point as formulas: 

  𝐶𝑈𝑃(𝜆)             𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝜆0) = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

                               Such that: 

∑ aij(λ0) 𝑥𝑗 ≤ 𝑏𝑖(𝜆0)
n

j=1

  

                   𝑥𝑗   ≥  0, 𝑖 = 1,2, . . . , 𝑚 

7. Solve the 𝐶𝑈𝑃(𝜆0) using the Simplex method . Let   𝑥𝑗
∗𝑈(𝜆0)   denote an optimal solution of 

fo 𝐶𝑈𝑃(𝜆0). 
8. Formulate the LIP corresponding to the given RILP. 
9. convert the  𝐿𝐼𝐿𝑃 to the crisp upper  linear programming problem 𝐶𝐿𝐿𝑃(𝜆). 
10. Finding the optimal solution inside a point in interval of coefficients of 𝐶𝐿𝐿𝑃(𝜆0). 
11. We choose a parameter value 𝜆 = 𝜆0 ∈ [0,1], Then each interval coefficient of CLLP is transformed 

into a crisp value as follows: 

𝑎𝑖𝑗(𝜆) = 𝑎𝑖𝑗
𝐿 + 𝜆(𝑎𝑖𝑗

𝑈 − 𝑎𝑖𝑗
𝐿 ), 𝑏𝑖𝑗(𝜆) = 𝑏𝑖𝑗

𝐿 + 𝜆(𝑏𝑖𝑗
𝑈 − 𝑏𝑖𝑗

𝐿 ) and  𝑐𝑖𝑗(𝜆) = 𝑐𝑖𝑗
𝐿 + 𝜆(𝑐𝑖𝑗

𝑈 − 𝑐𝑖𝑗
𝐿  

 

12. we get the Crisp Linear Programming Model at an Interior Point as formulas: 
                              𝐶𝐿𝑃(𝜆)  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝜆0) = ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1  

                               Such that: 

∑ aij(λ0) 𝑥𝑗 ≤ 𝑏𝑖(𝜆0)
n

j=1

  

                   𝑥𝑗   ≥  0, 𝑖 = 1,2, . . . , 𝑚 

13. Solve the 𝐶𝐿𝑃(𝜆0) using the Simplex method . Let   𝑥𝑗
∗𝐿(𝜆0)   denote an optimal solution of 

fo 𝐶𝐿𝑃(𝜆0). 

14. The optimal solution of the given 𝑅𝐼𝑃 is: 

𝑥𝑗
∗(𝜆0) = (𝑥𝑗

∗𝐿(𝜆0), 𝑥𝑗
𝑈(𝜆0)),       𝜆0 ∈ [0,1] 

And 𝑓𝑗
∗(𝜆0) = [𝑓𝑗

∗𝐿(𝜆0), 𝑓𝑗
𝑈(𝜆0)],       𝜆0 ∈ [0,1] 

     This example explains how the above algorithm systematically transforms the input into the final 
output optimal solution. 
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 Example (1): 

𝑚𝑖𝑛  𝑓 = ∑ 𝑐𝑗
𝑟𝑥𝑗

3
𝑗=1   

                                                          such that: 

∑  
3

𝑗=1
𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖         𝑖 = 1,2,3, 

0 R

jx , 𝑗 = 1,2,3
 

 
assume that the rough interval characterized as: 
𝑐𝑗

𝑟 =(]59.5,60.5]:[59,61]      [49.5,50.50.5]:[49,51]     [29.5,30.5]:[29,31]) 

  
 

                 aij
r = (

[2.5,3.5]: [2,4] [1.5,2.5]: [1,3] [0.5,1.5]: [0,2]

[1.5,2.5]: [1,3] [2.5,3.5]: [2,4] [1.5,2.5]: [1,3]

[0.5,1.5]: [0,2] [0.5,1.5]: [0,2] [3.5,4.5]: [3,5]

) 

    

                     𝑏𝑖
𝑟 = (

[239.5,240.5]: [239,241]

[199.5,200.5]: [199,201]

[179.5,180.5]: [179,181]
) 

   
        Hence, the above RIP problem can be formulated as follows: 

𝑈𝐼𝐿𝑃                min 𝑓𝑈𝐼 = ∑ 𝑐𝑗
𝑈𝐼𝑥𝑗

𝑈𝐼3
𝐽=1      

                 Such that : 
 

                                               ∑ 𝑎𝑖𝑗
𝑈𝐼𝑥𝐽

𝑈𝐼 ≤ 𝑏𝐽
𝑈𝐼 ,   𝑖 = 1,2,33

𝐽=1  

 

                                    𝑥𝑗
𝑈𝐼 ≥ 0     𝑖 = 1,2, … , 𝑛 

where 

𝑐𝑗
𝑈𝐼 = ([59,61] [49,51] [29,31]) 

                                       

aij
UI = (

[2,4] [1,3] [0,2]

[1,3] [2,4] [1,3]

[0,2] [0,2] [3,5]
) 

  

                                             𝑏𝑖𝑗
𝑈𝐼 = (

[239,241]

[199,201]

[179,181]
) 

 
 Also, the RIP problem can be expressed in LI form as follows 

𝐿𝐼𝑃                min 𝑓𝐿𝐼 = ∑ 𝑐𝑗
𝐿𝐼𝑥𝑗

𝐿𝐼3
𝐽=1      

                                  such that : 

                                               ∑ 𝑎𝑖𝑗
𝐿𝐼𝑥𝐽

𝐿𝐼 ≤ 𝑏𝐽
𝐿𝐼 ,   𝑖 = 1,2,33

𝐽=1  

 

                                    𝑥𝑗
𝐿𝐼 ≥ 0     𝑖 = 1,2, … , 𝑛 

Where 
 

𝑐𝑗
𝐿𝐼 = ([59.5,60.5] [49.5,50.5] [29.5,30.5]) 

 

aij
LI = (

[2.5,3.5] [1.5,2.5] [0.5,1.5]

[1.5,2.5] [2.5,3.5] [1.5,2.5]

[0.5,1.5] [0.5,1.5] [3.5,4.5]
) 

    

                     𝑏𝑖
𝐿𝐼 = (

[239.5,240.5]

[199.5,200.5]

[179.5,180.5]
) 
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     Now,  in the crisp formulation of the  two problems 𝑈𝐼𝑃  and 𝐿𝐼𝑃, and assuming that the paremeter 
takes the value 𝜆0 = 0.3. the variables 𝜆0 is calculated as follows: 

     We find the solution to the problem based on the parameter 𝜆0.  defined by the decision-maker 𝜆0 =
0.3. 

𝑎𝑖𝑗(𝜆) = 𝑎𝑖𝑗
𝐿 + 0.3(𝑎𝑖𝑗

𝑈 − 𝑎𝑖𝑗
𝐿 ), 𝑏𝑖𝑗(𝜆) = 𝑏𝑖𝑗

𝐿 + 0.3(𝑏𝑖𝑗
𝑈 − 𝑏𝑖𝑗

𝐿 ) and  𝑐𝑖𝑗(𝜆) = 𝑐𝑖𝑗
𝐿 + 0.3(𝑐𝑖𝑗

𝑈 − 𝑐𝑖𝑗
𝐿 ) 

The 𝑈𝐼𝑃(𝜆) as : 
 

𝑈𝐼𝑃(𝜆0)                 min 𝑓𝑈𝐼 = ∑ 𝑐𝑗
𝑈𝐼(𝜆0)𝑥𝑗

𝑈𝐼3
𝐽=1      

                            Such that: 

                                               ∑ 𝑎𝑖𝑗
𝑈𝐼(𝜆0)𝑥𝐽

𝑈𝐼 ≤ 𝑏𝐽
𝐿𝐼(𝜆0),   𝑖 = 1,2,33

𝐽=1  

 

                                    𝑥𝑗
𝑈𝐼 ≥ 0     𝑖 = 1,2, … , 𝑛 

Then, we get 

𝑐𝑖
𝑈(𝜆0) = (59.6 49.6 29.6) 

 

aij
U(λ0) = (

2.6 1.6 0.6
1.6 2.6 1.6
0.6 0.6 3.6

) 

    

                                  𝑏𝑖
𝑈 = (

239.6
199.6
179.6

) 

By solving the 𝑈𝐼𝑃(𝜆0) problem, we obtain the following solution. 

𝑥1
∗𝑈(𝜆0) = 80.75,  𝑥2

∗𝑈(𝜆0) = 5.188   and 𝑥3
∗𝑈(𝜆0) = 35.565, 

𝑓𝑚𝑎𝑥
∗𝑈 (𝜆0) = 6122 

 
For the lower problem  
 

𝐿𝐼𝑃(𝜆0)                 min 𝑓𝐿𝐼 = ∑ 𝑐𝑗
𝐿𝐼(𝜆0)𝑥𝑗

𝐿𝐼3
𝐽=1      

                            Such that 

                                               ∑ 𝑎𝑖𝑗
𝐿𝐼(𝜆0)𝑥𝐽

𝐿𝐼 ≤ 𝑏𝐽
𝐿𝐼(𝜆0),   𝑖 = 1,2,33

𝐽=1  

 

                                    𝑥𝑗
𝐿𝐼 ≥ 0     𝑖 = 1,2, … , 𝑛 

Then, we get 

𝑐𝑖
𝐿𝐼(𝜆0) = (59.8 49.8 29.8) 

 

aij
LI(λ0) = (

2.8 1.8 0.8
1.8 2.8 1.8
0.8 0.8 3.8

) 

    

                                  𝑏𝑖
𝐿𝐼 = (

239.8
199.8
179.8

) 

By solving the 𝐿𝐼𝑃(𝜆0) problem, we obtain the following solution. 
 

𝑥1
∗𝐿𝐼(𝜆0) = 74.493      𝑥2

∗𝐿𝐼(𝜆0) = 3.623 ,     𝑥3
∗𝐿𝐼(𝜆0) = 30.870  

𝑓∗
𝑚𝑎𝑥(𝜆0)
𝐿𝐼 = 5555                

We optain the optimal solution  

𝑥1
∗𝑅𝐼𝑃(𝜆0) = [74.493 ,80.753]    𝑥2

∗𝑅𝐼𝑃(𝜆0) = [3.623,5.188]  𝑥3
∗𝑅𝐼𝑃(𝜆0) = [30.870,35.565],  

                   𝑓∗
𝑚𝑎𝑥(𝜆0)
𝐿𝐼 = [5555, 6122]  

Conclusion: 
     In this study, We are working on a solution to the Rough Interval Programming Problem was 
developed based on problem decomposition and interval analysis. The proposed approach begins via 
decomposing the  rough interval coefficients in objective function and constraints  of the problem into 
two deterministic models sub problems  an UIP(λ) and a LIP(λ), Which respectively represent the 
internal and external periods of uncertain transactions. 
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     The an UIP(λ) and a LIP(λ)are solved to obtain their corresponding optimal solutions. These 
solutions provide estimates of the possible area of the solution and the value of the optimal solution 
with uncertainty coefficients in problem. 
     To further capture the  of the solution within the  rough interval range, an interval sampling using this 
strategy, for each parameter within the interval of objective function and constraints of problem, 

intermediate values of interval  are generated by the relations of  a_ij(λ)  =  aij
L   +  0.3(aij

U  −

 aij
L), b_ij(λ)  =  bij

L  +  0.3(bij
U − bij

L), and cij(λ)  =  cij
L  +  0.3(cij

L  −  cij
L). When λ is determined by the 

decision-maker. 
     Finally, the optimal solutions obtained from the UIP(λ)   and LIP(λ)  problems, together with the 
sampled intermediate solutions, are integrated to construct a final optimal solution  of RIP that efficiently 
reflects the full range of rough interval. The proposed methodology provides a reliable and 
computationally efficient decision-support tool for LPP  involving uncertainty parameters. 
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