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Abstract:

In this paper, this algorithmic solution based on rough interval coefficients for uncertainty parameters is
developed using the lower and upper interval (LILP) and (UILP) approaches. We proposed method
addresses the uncertainty (rough interval) Programming (RIP) problem, in which the coefficients of the
objective function and constraints are characterized as uncertainty intervals. An algorithm gives an
efficient decision support tool structure for solving linear programming problems characterized by
uncertain data. It is shown that the solutions of the related crisp problems, namely the Upper Crisp
Interval linear programming Problem (UIP(A)) and the Lower Crisp Interval linear programming
Problem (LIP(A)), The solution of the (UIP(A)) and (LIP(A)) are depends on the value of form limits of
the interval solution of the RIP problem and its optimal solution, the solution of the (UIP(A)) and (LIP(A))
are depends on the value ( A) which decision maker. The applicability of the proposed approach is
verified through a numerical example.

Keywords: Linear Programming Problem, Rough Interval, Optimal Solution.

1oadddl
Bl 4 ja0 aladiuly @lldg daidy pe Glabaay dpbadll da ) AlCSG Jad daa el jnghal A3 (Gl oda
Ui Lot 5 (il o L) oy Gl day o5 (aaladl 2aall Loall 3 yall (5 A1 Ulall 5 il adaal 0 8 ) dcadlal)
aeliall aaall Liall e labaal) cld dukadl) Ana pull A8 5 AYT 5 (aalall daall L) i labaall cfd Adadl) daa al)
Ayl 88y ) Hall 2 Lasasy Ay Aad g 7 el zedll 13y Ay ye O ey Aphadl) dae jll AS
ClKEL Gl Ja day s Liall 3l cld ddadl) dae ) AEay Llall 5 gl <l ddadl) dae ) AlKEG e UK
IS Gl Ja e duzaalal) i lalaall <3 ddaddl daa ) A Y Jall IS 5 ¢ aSilaand] 38 5k alasinly
O Lbaall @)y dadadll Ao ) AKED JiY) Jall a5yl Wlal) dasll Cus 63 i 5y gem B (0 sSus Liall g Wlall
&y caaall aall Liall cidlabaall cld dydadl) dna pll A JiaY1 Jall oo Lial) dell y Gmalall 2all Ulal

i g Qe DA G 2 el 138 Gl 4l 30LiS (e Gl

JieY) Jall i i 5 5 (ddadll dae pll Al 1daalidal) cilalsl)

253 | Afro-Asian Journal of Scientific Research (AAJSR)


https://aajsr.com/index.php/aajsr/index
mailto:abmaabkhalifa@gmail.com

Introduction:

The theory of uncertainty parameters, originally introduced by (Pawlak, 1982) provides a
mathematical framework for handling indeterminacy, incompleteness and uncertainty in data . Rough
interval theory has since been known as an efficient tool for modeling imprecise information without
requiring preliminary and additional information about data .

To further develop the capability of indeterminacy modeling, (Dubois & Prade, 1990) combined the

definitions of rough interval and fuzzy sets, leading to the development of fuzzy rough interval. These
mixture models have proven efficient in instead of imprecision inherent in real data. therefore, many
extensions and generalizations of rough interval and fuzzy sets, have been proposed based on logical
different operators and approximation mechanisms in the direction of improve their computational
power (Klir & Yuan, 2008).
In parallel, the indeterminacy in optimization problems it gets a lot of attention, particularly of linear
programming problems models with vague parameters. More than on study have addressed
optimization problems with rough interval and fuzzy coefficients as a means of capturing indeterminacy
of objective functions and constraints (Chinneck &Ramadan, 2000: Moore,1979).  However, when
the indeterminacy is represented by rough intervals or fuzzy classical solution approaches become
insufficient.

In this paper, we propose a novel algorithmic approach to decide the optimal solution of uncertainty
linear programming problems in which the coefficients of the problem are expressed as rough intervals
in objective function and constraints. The planned method depends on the construction of lower interval
model and upper interval model that capture the uncertainty in the problem parameters. This approach
can give out as a practical and reliable decision support tool for addressing a wide range of optimization
problems linking uncertainty data. Also, it is demonstrated that the optimal solutions obtained from the
LILPP and UILPP bound the feasible solution set and the optimal objective value of the RILPP.
Problem formulation:

Consider the rough interval problem (RIP):
n

min fR =Z[[Cjw' e B | P
=1
such that
teilait, alll | [att a1 < [0, b8V by b (D)
ij >0 2)

i=12,..m andj=12..n
Definition 1: (Feasible solution)
An element x satisfying all the constraints (1) and (2) arecalled a feasible solution (Pandian &
Natarajan, 2010a).
Definition 2:(optimal Soltion)
Let f(x) denote the objective functon. A feasible solution x* is called an optimal solution if it gives the
minimum value of f(x) in a minimization problem or the maximum value of f(x)) in a maximization
problem, in all feasible solutions (Moore, 1979)
Theorem 1: The optimal solution of the RIP, we get from the solutions of the two problems:

(1) .
UIP  : maxf!V = Z clV IV

j=1
Subject:
ey alfxf” <l
xV>0
We get the optimal soltion x;/V for the UIP.

(2) .
LIP : max f't = Z clt xl*

I=1
Subject:
Ly alfxft < bjf,j=1,2,....,m
x>0
We obtain the optimal solution x;™" for the UIP.

proof:
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Letfor s = {[xfY,x"V]:[x**,x/*]] , for all j }be a rough interval feasible solution RIP
Therefore, { [x/V,x/"] , for all j }, {[x**,x/*]], for all j are feasible solutions of the
problems UIP and LIP
Now, since x;V, for all 2 € [¢;*Y, ¢V ] and x;*, for all A € [¢;j*, ¢;V" ]}, are optimal
solutions of UIP and LIP ,we have
YW 5 <3 e 1Y
1 aif Wx+'< bl (),

And
Tt " < X7, c(DF xf and

o1 aif <bjF (D)
With the condition

x;' (D) < %Y
This implies that to

n n n n
D oty @IS c@F) @ )
j=1 j=1 j=1 j=1

we can conclude that the set [xj*(ﬁl)‘xj*(‘/’l)‘] for all 1 is a feasible solution of RIP(A).
Thus, the set of intervals [x]{;) x/;,] is an interval optimal solution of the proble RIP(2).

Algorithm Solution:
This algorithm for finding an optimal solution for RIP. The algorithm for the procedure is as follows.
Consider the rough interval linear programming problem RILP.
Formulate the UILP corresponding to the given RILP.
convert the UILP to the crisp upper linear programming problem CULP ().
Finding the optimal solution inside a point in interval of coefficients of .
We choose a parameter value 1 = 4, € [0,1], Then each interval coefficient of CULP is transformed
into a crisp value as follows :

a;jy = afj + A(afj — afy), by = by + A(bfj — bi;) and ¢y = cfj + A(clj — cfj)

agbrown=

6. we getthe Crisp Linear Programming Model at an Interior Point as formulas:
CUP(A) maximize f (o) = Xj=1¢jX;
Such that:

n
ZH 3ijng) % < bi(Ao)
xi 20,i=12,....m

7. Solve the CUP(4,) using the Simplex method . Let xj*”(/lo) denote an optimal solution of

fo CUP ().
8. Formulate the LIP corresponding to the given RILP.
9. convert the LILP to the crisp upper linear programming problem CLLP(1).
10. Finding the optimal solution inside a point in interval of coefficients of CLLP(4,).
11. We choose a parameter value 1 = 4, € [0,1], Then each interval coefficient of CLLP is transformed

into a crisp value as follows:

aij = af; + A(af; — afj), bijy = bl + A(bfj — b;) and ¢ = cfj + Acff — cf;
12. we get the Crisp Linear Programming Model at an Interior Point as formulas:
CLP(A) maximize f(1y) = X]-; ¢jx;
Such that:

n
Z. 1aij(A0) x; < b; (o)
i=
xi =0i=12,...,m
13. Solve the CLP(4,) using the Simplex method . Let x}-*L(AO) denote an optimal solution of

fo CLP(y).
14. The optimal solution of the given RIP is:
x5 (o) = (" (A0), 57 (A0)), Ao €[0,1]
And f;"(20) = [fi*(Ae), [ (2], 4o € [0,1]
This example explains how the above algorithm systematically transforms the input into the final
output optimal solution.
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Example (1):
min f =Y,
such that:
3
Z ainj < bi i= 1,2,3,

j=1

R .
x; 20, j=123

assume that the rough interval characterized as:

¢j =(]59.5,60.5]:[59,61]  [49.5,50.50.5]:[49,51] [29.5,30.5]:[29,31])

[2.53.5]:[24] [15,2.5]:[1,3] [0.5,1.5]:[0,2]
af = [1525]:[1,3] [2.53.5]:[24] [1525]:[13]
[0.5,1.5]:[0,2] [0.5,1.5]:[0,2] [3.5,4.5]:[3,5]

[239.5,240.5]: [239,241]
b = | [199.5,200.5]: [199,201]
[179.5,180.5]: [179,181]

Hence, the above RIP problem can be formulated as follows:
UILP min fU" = 33_, ¢/'x/!
Such that

Yialxft<bl, i=123

x'20 i=12,..,n
where

¢/l = ([59,61] [49,51] [29,31])

[2,4] [1,3] [0,2]
al'=([1,3] [24] [13]
[0,2] [0,2] [3,5]

[239,241]
b = [199,201]
[179,181]
Also, the RIP problem can be expressed in LI form as follows
LIP min f* = ¥3_; ¢f'x}!
such that :

YialxH < bH, i=123

Where

cH' = ([59.5,60.5] [49.550.5] [29.530.5])

[2.5,3.5] [1.5,2.5] [0.5,1.5]
aj' = [1.525] [253.5] [1.52.5]
[0.5,1.5] [0.5,1.5] [3.5,4.5]

[239.5,240.5]

bH = [199.5,200.5]
[179.5,180.5]
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Now, in the crisp formulation of the two problems UIP and LIP, and assuming that the paremeter
takes the value 1, = 0.3. the variables 4, is calculated as follows:
We find the solution to the problem based on the parameter 1,. defined by the decision-maker 4, =
0.3.
aijy = af; +0.3(a; — aly), bijay = bl +0.3(b{j — bf5) and c;jy = ¢l + 0.3(c — ¢f5)
The UIP(A) as:

UIP(1y) min fU = ¥3_, ¢/ (A9)x]"
Such that:
Z?zl af]jl(/lo)x]m < b]“(lo), i=123

x'20 i=12,..,n
Then, we get

c?(Ao) = (59.6 49.6 29.6)

26 1.6 06
aH(AO)=<1.6 2.6 1.6)

06 06 3.6
239.6
bl = (199.6)

179.6
By solving the UIP(4,) problem, we obtain the following solution.

%U(1,) = 80.75, x3V(Ay) = 5188 and x3Y(4,) = 35.565,
f%ax(lo) = 6122

For the lower problem

LIP(1y) min f4 = ¥3_, ¢/ (29)x}!
Such that
Yioial (o)xF < bH (), i=123

x>0 i=12..,n
Then, we get
cH(A) = (59.8 49.8 29.8)

28 1.8 08
aiL]-'(AO)=<1.8 2.8 1.8>
0.8 08 38

239.8
b = <199.8>
179.8

By solving the LIP(A,) problem, we obtain the following solution.

. xiM(20) = 74493 x3M(Xy) = 3.623, x3(4,) = 30.870
f* = 5555

max(1g)
We optain the optimal solution

2™ () = [74.493 ,80.753]  x3"'7 (29) = [3.623,5.188] x3"'" (1) = [30.870,35.565],
fH = [5555, 6122]

max(dg)
Conclusion:

In this study, We are working on a solution to the Rough Interval Programming Problem was
developed based on problem decomposition and interval analysis. The proposed approach begins via
decomposing the rough interval coefficients in objective function and constraints of the problem into
two deterministic models sub problems an UIP(A) and a LIP(A), Which respectively represent the
internal and external periods of uncertain transactions.
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The an UIP(A) and a LIP(A)are solved to obtain their corresponding optimal solutions. These
solutions provide estimates of the possible area of the solution and the value of the optimal solution
with uncertainty coefficients in problem.

To further capture the of the solution within the rough interval range, an interval sampling using this
strategy, for each parameter within the interval of objective function and constraints of problem,
intermediate values of interval are generated by the relations of a_ij(d) = a{“j + 0.3(3}]? -
a;),b_ij(d) = b + 03(b] — bf), and ¢;(A) = cfj + 0.3(c}; — cf}). When A is determined by the
decision-maker.

Finally, the optimal solutions obtained from the UIP(A) and LIP(A) problems, together with the
sampled intermediate solutions, are integrated to construct a final optimal solution of RIP that efficiently
reflects the full range of rough interval. The proposed methodology provides a reliable and
computationally efficient decision-support tool for LPP involving uncertainty parameters.
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