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Abstract:  
In this research, we extend the existing results on subdirect sums of 𝑆-strictly diagonally dominant 
matrices to the more general class of 𝛴-Strictly Diagonally Dominant (𝛴-SDD) matrices. As 𝛴-SDD 
matrices form a proper superclass of 𝑆-SDD matrices and a subclass of 𝐻-matrices, we investigate their 
structural properties under matrix combination operations. Specifically, we provide a complete 
characterization of the conditions under which the 𝑘-subdirect sum of two 𝛴-SDD matrices preserves 
the 𝛴-SDD property. Furthermore, we establish when the conventional sum of two 𝛴-SDD matrices 
remains 𝛴-SDD. These results broaden the understanding of diagonal dominance under scaling and 
contribute to the study of matrix stability within hierarchical subclasses of 𝐻-matrices. 
 
Keywords: 𝑘-subdirect sum, 𝐻-matrices, 𝛴-SDD matrices, overlapping blocks, diagonal dominance. 

 :صخلملا
 لمشتل S-SDD عونلا نم ةمراصلا ةیرطقلا ةنمیھلا تاذ تافوفصملل ةرشابملا ةیعرفلا عیماجملاب ةقلعتملا جئاتنلا عیسوت ىلإ ةقرولا هذھ فدھت 
 )superclass( ایلع ةئف لثمت ةئفلا هذھ فصوبو .Σ-SDD عونلا نم ةمراصلا ةیرطقلا ةنمیھلا تاذ تافوفصملا يھو ،ةیمومع رثكلأا ةئفلا
 ةیصاخ ىلع ظفاحت يتلا ةیضایرلا ىنُبلا يف ثحبت ةساردلا نإف ،H-matrices تافوفصملا نم )subclass( ةیعرف ةئفو S-SDD تافوفصملل
-k( رشابملا يعرفلا k  عومجملا اھدنع ىقبی يتلا طورشللً لاماك اًفیصوت ةقرولا مدقت .ةفلتخملا عمجلا تایلمع تحت ةمراصلا ةیرطقلا ةنمیھلا

subdirect sum( عونلا نم نیتفوفصمل Σ-SDD ةیصاخ ىلع اظًفاحم Σ-SDD، نیتفوفصمل يدیلقتلا عومجملا اھیف لظی يتلا تلااحلا نّیبُت امك 
-H ـل ةعباتلا ةجردتملا تائفلا نمض تافوفصملا ةیرارقتسا مھف زیزعت يف جئاتنلا هذھ مھستو .اھسفن ةیصاخلاب اظًفتحم Σ-SDD عونلا نم

matrices. 
 
 .ةرشابملا ةیعرفلا عیماجملا ،H-matrices تافوفصملا ،k-subdirect sum ، Σ-SDD :ةیحاتفملا تاملكلا

 

Introduction 
     The k-subdirect sum operation on square matrices arises naturally in several computational and 

algebraic contexts, where it provides a structured framework for combining matrix blocks while 
preserving key stability-related properties [2,8]. One of the most fundamental matrix classes associated 
with such operations is the class of strictly diagonally dominant (SDD) matrices [4], characterized by 
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the requirement that each diagonal entry exceeds, in absolute value, the sum of all off-diagonal entries 
in the corresponding row. 

     Recent developments have extended this concept to the broader class of 𝛴-Strictly Diagonally 
Dominant (𝛴-SDD) matrices [2], in which diagonal dominance is defined through a summation involving 
scaled or partitioned off-diagonal entries. The symbol “𝛴” reflects the use of weighted or structured 
summations that generalize the classical SDD condition. As a result, 𝛴-SDD matrices form a proper 
superclass of 𝑆-SDD matrices and a subclass of 𝐻-matrices, the latter being characterized by 
comparison matrices that satisfy strict diagonal dominance [5,6]. 

     Understanding how 𝛴-SDD matrices behave under matrix addition is crucial for applications in 
numerical analysis, iterative methods, and block-structured matrix computations. Specifically, 
determining the conditions under which the sum of two 𝛴-SDD matrices remains within the same class 
has important implications for matrix stability and convergence theory. Likewise, analyzing the 
preservation of the 𝛴-SDD property under the 𝑘-subdirect sum operation provides insight into how 
diagonal dominance behaves under structured block combinations. 

     Specifically, this research follows the theoretical framework of Bru and Cvetkovic, et al (2008)[2]. 
Our goal is to verify their findings on 𝛴-SDD matrix sums using a simplified notation and numerical 
examples, we build upon existing results for 𝑆-SDD matrices and extend them to the more general 𝛴-
SDD framework. We begin by recalling the essential definitions and preliminary concepts needed 
throughout the paper [2,6,8]. 
Preliminaries and Definitions: 
Definition 1: [6] A matrix 𝑀 = '𝑚!") ∈ 𝐶#,#	 is called an SDD matrix if, for each 𝑖	 ∈ 	𝑁, it holds that 
                                                       |𝑚!! 	| > 𝑟!(𝑀)																																																																																																						(1) 
It is well known that.  
Definition 2: Consider a square matrix 𝑀 = '𝑚!") ∈ 𝐶#,#	, where	𝑛 ≥ 2, Let 	𝛴 be a non-empty proper 
subset of the index set 𝑁 = {1,2, … . 𝑛}. We categorize 𝑀 as a 𝛴-strictly diagonally dominant (𝛴-SDD) 
matrix if the following inequalities are satisfied: 

|𝑚!!| > 𝑟!&(𝑀)					for	all	𝑖 ∈ 𝛴	𝑎𝑛𝑑	
(|𝑚!!| 	−	𝑟!&(𝑀))|𝑎""| 	−	𝑟"&

! 	(𝑀)) 	> 	 𝑟!&
! 	(𝑀)𝑟"&	(𝑀)			for	all		𝑖	 ∈ 	Σ	, 𝑗	 ∈ 	𝛴'								(2) 

     If  𝛴 = 𝑀 (and thus 𝛴 = ∅), the conditions reduce to |𝑚!!| > 𝑟!(𝑀)	for all 𝑖	 ∈ 	𝑁,. This is simply the 
standard definition of a strictly diagonally dominant (SDD) matrix. The definition above is a slight 
modification of the one given in [4], where the case 𝛴 = 𝑁 was excluded. However, this omission is 
inconsequential: if a matrix is SDD, it automatically satisfies the 𝛴-SDD property for every nonempty 
proper subset 𝛴 ⊂ 𝑁. 
Definition 3: Let 𝑀 = L𝑚!"M ∈ 𝐶#×#. If |𝑚!!| > 𝑅!(𝑀), ∀!∈ 𝑁, then 𝑀 is said  to be a strictly diagonally 
dominant matrix and denoted 𝑀 ∈ 𝐷, If there exists a positive diagonal matrix 𝑋 such that 𝑀𝑋 ∈ 𝐷, then 
𝑀 is said to be a generalized strictly diagonally dominant matrix (i.e. nonsingular 𝐻- matrix) and denoted 
𝑀 ∈ 𝐷∗.  
Subdirect Sum of Matrices: 
     As in [4][8][2], Let 𝑀 and 𝑁 be two square matrices of order 𝑛* and 𝑛+, respectively, and let 𝑘	be an 
integer such that 1 ≤ 𝑘 ≤ 𝑚𝑖𝑛(𝑛*, 𝑛+). Let 𝑀 and 𝑁 be partitioned into 2	 × 	2 blocks as follows,  

                                 𝑀 = T𝑀** 𝑀*+
𝑀+* 𝑀++

U ,									𝑁 = T𝑁** 𝑁*+
𝑁+* 𝑁++

U																																																							(3) 
where 𝑀**	and 𝑁++ are square matrices of order	𝑘. [8], we call the square matrix of order 𝑛	 = 	𝑛* 	+
	𝑛+ 	− 	𝑘 given by  

                                           𝑃 = X
𝑀** 𝑀*+ 𝑂
𝑀+* 𝑀** +𝑁** 𝑁*+
𝑂 𝑁+* 𝑁++

Z																																																																(4) 

the 𝑘-subdirect sum of 𝑀 and 𝑁	and denote it by 𝑃	 = 	𝑀⊕, 𝑁.  
Each element 𝑝!" of the resulting matrix 𝑃 = 𝑀⊕, 𝑁 can be explicitly constructed from the elements 
of 𝑀 and 𝑁. For precise formulation, we define the following index subsets  

𝛼 = {1,2, … , 𝑛* − 𝑘}, 𝛽 = {𝑛* − 𝑘 + 1, 𝑛* − 𝑘 + 2,… , 𝑛*}, 𝛾 = 𝑛* + 1, 𝑛* − 𝑘 + 2,… , 𝑛        (5)  
with note that 𝛼 ∪ 𝛽 ∪ 𝛾	 = {1,2, . . . , 𝑛} and that 𝑛 = 𝑡 + 𝑛+. 
Let  𝑃 = 𝑝(!") be a matrix, and by defining 𝑡 = 𝑛* − 𝑘, we can write 
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𝑝!" =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
																	𝑚!" 												𝑖 ∈ 𝛼, 𝑗 ∈ 𝛼 ∪ 𝛽																																													

0																	𝑖 ∈ 𝛽,											𝑗 ∈ 𝛾																																					
	𝑚!" 											𝑖 ∈ 𝛽	,									𝑗 ∈ 𝛼																																			

𝑚!" + 𝑛!/0,"/0				𝑖 ∈ 𝛽,										𝑗 ∈ 𝛽																																															
𝑛!/0,"/0								𝑖 ∈ 𝛽,									𝑗 ∈ 𝛾																																								
0																𝑖 ∈ 𝛽	,								𝑗 ∈ 𝛼																																					

								𝑛!/0,"/0							𝑖 ∈ 𝛾	,								𝑗 ∈ 𝛽 ∪ 𝛾																																								

(6) 

Main Theorems for k-Subdirect Sums: 
Theorem 1: [4] Consider two square matrices 𝑀 and 𝑁 with dimensions 𝑛* × 𝑛*	and	𝑛+ ×
𝑛+	respectively, where 𝑛* ≥ 2. let 𝐾 be an  arbitrary integer within the rang 	1 ≤ 	𝐾 ≤ 	𝑚𝑖𝑛(𝑛*, 𝑛+). Define 
the index sets 𝛼, 𝛽	, 𝛾 as in (5). Partition 𝑀 and 𝑁 as in (3). Let 𝛴	be a set  of indices of the form 𝛴 =
{1,2, ….} suppose that: 

1. 𝑀 is 𝛴-strictly diagonally dominant, with |𝛴| ≤ |𝛼|.  
2. 𝑁 be strictly diagonally dominant.  
3. All diagonal entries  of  𝑀++ and 𝑁** are positive (or all negative). 

Then the 𝑘-subdirect sum 𝑃 = 𝑀⊕, 𝑁 is 𝛴-strictly diagonally dominant, and consequently nonsingular.  
Proof. We begin our prove the case which	𝛴 = 	𝛼. Given the property that 𝑀 is 𝛼-strictly diagonally 
dominant, it follows that: 
For all 𝑖 ∈ 𝛼: 

                                         	|𝑚!!| > 𝑟!1(𝑀) = ∑ m𝑚!"m"∈1
"3!

	                                                        (7) 

and for all 𝑖 ∈ 𝛼, 𝑗 ∈ 𝛽: 
			L|𝑚!!| − 𝑟!1(𝑀)M nm𝑚""m − 𝑟"

4(𝑀)o > 𝑟"
4(𝑀)𝑟"1(𝑀)                                      (8) 

Note that 𝑀 is of order 𝑛*; then the complement of 𝛼 in {1,2, . . . , 𝑛*}	is 𝛽. We want to show that 𝑃	is also 
an 𝛼-strictly diagonally dominant matrix, i.e., we must show that 

 1.  |𝑝!!| > 𝑟!1(𝑃)∀𝑖 ∈ 𝛼. 
 

2.  L|𝑝!!| − 𝑟!1(𝑃)M nm𝑝""m − 𝑟"
4∪6(𝑃)o > 𝑟!

4∪6(𝑃)𝑟"1(𝑃)∀𝑖 ∈ 𝛼, ∀𝑗 ∈ 𝛽 ∪ 𝛾. 
 

(9) 

Since 𝑃 is of order 𝑛 = 𝑛* + 𝑛+ − 𝑘, the complement of 𝛼 in {1,2, … , 𝑛} is 𝛽 ∪ 𝛾.  
Proof of condition (1): using equation (6), and part 1 of (9). 
to obtain 

                     |𝑝!!| = |𝑚!!| > 𝑟!1(𝑀) = 𝑟!1(𝑃), ∀𝑖 ∈ 𝛼.                                         (10) 
Proof of condition (2): We distinguish two cases: 𝑗	 ∈ 	𝛽 and 𝑗	 ∈ 	𝛾. 
If 𝑗	 ∈ 	𝛽, (recall that 𝑡	 = 	𝑛* 	− 	𝑘):  
From (6) we have the following relations: 

           𝑟"1(𝑃) = ∑ m𝑝",m =q m𝑚",m = 𝑟"1
"3,,,∈1

"3,,,∈1 (𝑀),																				(11) 

𝑟"
4∪6(𝑃) = q m𝑝",m = q m𝑝",m + q m𝑝",m

"3,,,∈6

=	𝑟"
4(𝑃) + 𝑟7

6(𝑃),
"3,,,∈4"3,,,∈4∪6

														(12) 

𝑟"
4(𝑃) = q m𝑚", + 𝑛"/0,,/0m,																																																							(13)

"3,,,∈4

 

𝑟"
6(𝑃) = q m𝑛"/0,,/0m = 𝑟"/0

6 (𝑁),
"3,,,∈6

																																																(14) 

                                 𝑝"" = 𝑚"" + 𝑛"/0,"/0																																																																	       (15) 

Therefore we can write 

L|𝑝!!| − 𝑟!1(𝑃)M nm𝑝""m − 𝑟7
4∪6(𝑃)o 

= L|𝑚!!| − 𝑟!1(𝑀)M nm𝑚"" + 𝑛"/0,"/0m − 𝑟"
4(𝑃) −	𝑟"

6(𝑃)o , ∀𝑖 ∈ 𝛼, ∀𝑗 ∈ 𝛽          (16) 

Starting with the substitution 𝑝!! =	𝑚!!, indices 𝑖 ∈ 	𝛼 and equations (12) and (15). If the diagonal entries 
of both sub-matrices 𝑀++	and 𝑁**	carry the same sign whether positive or negative the absolute value 
of their sum simplifies directly to: 
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|𝑚"" 	+	𝑛"/0,"/0| 	= 	 |𝑚"" 	| 	+	 |𝑛"/0,"/0| 
We can now update our main inequality. By substituting these new values (16) as: 
 L|𝑝!!| − 𝑟!1(𝑃)M nm𝑝""m − 𝑟"

4∪6(𝑃)o 
 

= L|𝑚!!| − 𝑟!1(𝑀)M nm𝑚""m + m𝑛"/0,"/0m − 𝑟"
4(𝑃) −	𝑟"

6(𝑃)o , ∀𝑖 ∈ 𝛼, 𝑗 ∈ 𝛽 

 
(17) 

Next, we examine the right hand of the equation  (17). By applying (13) the triangle inequality principle, 
we can establish an upper bound for the row sum as follows:  

𝑟"
4(𝑃) = q m𝑚", + 𝑛"/0,,/0m ≤ q m𝑚",m

"3,,,∈4"3,,,∈4

+ q m𝑛"/0,,/0m
"3,,,∈4

 

																																																							= 𝑟"
4(𝑀) + 𝑟"/0

4 (𝑁)																																																																		(18) 
Using (14), from (18) we obtain the following inequality: 

m𝑚""m + m𝑛"/0,"/0m − 𝑟"
4(𝑃) − 𝑟"

6(𝑃) ≥ m𝑚""m + m𝑛"/0,"/0m − 𝑟"
4(𝑀) − 𝑟"/0

4 (𝑁) − 𝑟"/0
6 (𝑁),                 (19) 

Since we have 𝑟"/0
4 (𝑁) + 𝑟"/0

6 (𝑁) = 𝑟"/0
4∪6 , we obtain 

m𝑚""m + m𝑛"/0,"/0m − 𝑟"
4(𝑃) − 𝑟"

6(𝑃) ≥ m𝑚""m − 𝑟"
4(𝑀) + m𝑛"/0,"/0m − 𝑟"/0

4∪6 ,										(20) 
This allows us to transform (17) into:  

L|𝑝!!| − 𝑟!1(𝑀)M nm𝑚""m − 𝑟"
4∪6(𝑃)o ≥ 

L|𝑚!!| − 𝑟!1(𝑀)Mnm𝑚""m − 𝑟"
4(𝑀) + m𝑛"/0,"/0m − 𝑟"/0

4∪6(𝑁)o , ∀𝑖 ∈ 𝛼, ∀𝑗 ∈ 𝛽,                 (21) 
Since L|𝑚!!| − 𝑟!1(𝑀)M is positive (as M is 𝛼-SDD) and  m𝑛"/0,"/0m − 𝑟"/0

4∪6(𝑁) is also positive (as 𝑁 is 
SDD), we have, 

                  m𝑚""m − 𝑟"
4(𝑀) + m𝑛"/0,"/0m − 𝑟"/0

4∪6(𝑁) > m𝑚""m − 𝑟"
4(𝑀)                                (22) 

This jointly with (18) leads to the strict inequality 
L|𝑝!!| − 𝑟!1(𝑃)M nm𝑝""m − 𝑟"

4∪6(𝑃)o > L|𝑚!!| − 𝑟!1(𝑀)M nm𝑚""m − 𝑟"
4(𝑀)o , ∀	𝑖 ∈ 𝛼, ∀	𝑗 ∈ 𝛽       (23) 

Finally, using 2 of (9) and equation (11): 
			L|𝑚!!| − 𝑟!1(𝑀)M nm𝑚""m − 𝑟"

4(𝑀)o > 𝑟!
4(𝑀)	𝑟"1(𝑀) = 𝑟!

4∪6(𝑃)𝑟"1(𝑃),						∀	𝑖 ∈ 𝛼, ∀	𝑗 ∈ 𝛽       (24) 
which allows us to transform equation (23) into the inequality 

   L|𝑝!!| − 𝑟!1(𝑃)M nm𝑝""m − 𝑟"
4∪6(𝑃)o > 𝑟!

4∪6(𝑃)𝑟"1(𝑃), ∀𝑖 ∈ 𝛼, ∀𝑗 ∈ 𝛽                     (25) 
If 𝑗	 ∈ 	𝛾, 
From (6): 

                            𝑟"1(𝑃) = ∑ m𝑃",m"3,,,∈1 = 0.                                                             (26) 
Therefore, the condition 2 of (9) becomes 

            L|𝑝!!| − 𝑟!1(𝑝)M nm𝑝""m − 𝑟"
4∪6(𝑃)o > 0,					∀𝑖 ∈ 𝛼, ∀𝑗	 ∈ 𝛾,                                  (27) 

This inequality is fulfilled since: 

The first term is positive: |𝑝!!| − 𝑟!1(𝑃) = |𝑚!!| − 𝑟!1(𝑀) > 0.  

The second term of (27) is also positive:  𝑝!! = 𝑛"/0,"/0	. for all 𝑗 ∈ 𝛾 and  

         𝑟"
4∪6(𝑃) = ∑ m𝑃",m"3,,,∈4∪6 = ∑ m𝑛"/0,,/0m"3,,,∈4∪6 = 𝑟"/0

4∪6(𝑁), ∀𝑗 ∈ 𝛾,                         (28) 

Since 𝑁	is strictly diagonally dominant we have 

                                     m𝑛"/0,"/0m −	𝑟"/0
4∪6(𝑁) > 0, ∀𝑗	 ∈ 𝛾																																																					(29) 

      Therefore equation (27) is fulfilled, which completes the proof for the case where 𝛴	 = 	𝛼. When 
|𝛴| < |𝛼|, the proof is analogous. With the key point being the subcase	𝑗 ∈ 𝛼\𝛴, a condition similar to 2) 
for 𝑃 in (9) still holds.  We provide an illustrative example of theorem 1 with a practical application of 
the proof.                 
Example 1 Consider the following matrices: 

𝑀* = X
8 1 0.5
0.5 7 1
0.5 0.5 6

Z,									𝑁* = X
6 0.5 0.5
0.5 9 1
0.5 1 8

Z,                                  (30) 

with 𝑛* = 𝑛+ = 3, 𝑘 = 1, and 𝛴 = 𝛼 = {1,2}. Matrix 𝑀* is 	𝛼-SDD, matrix 𝑁* is SDD, and the diagonal 
entries of (𝑀*)++	and	(𝑁*)**  are positive. The 1-subdirect sum 
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                       𝑃* = 𝑀*⨁*𝑁* =

⎣
⎢
⎢
⎢
⎡
8 1 0.5 0 0
0.5 7 1 0 0
0.5 0.5 12 0.5 0.5
0 0 0.5 9 1
0 0 1 1 8 ⎦

⎥
⎥
⎥
⎤
                                             (31) 

For  𝑖 ∈ 𝛼 = {1,2}, |(𝑝*)!!| > 𝑟!1(𝑃*), 
(𝑝*)** = 8 > 𝑟*1(𝑝*) = |(𝑝*)*+| + |(𝑝*)*8| = 1.5, (𝑝*)++ = 7 > 𝑟+1(𝑃*) = |(𝑝*)+*| + |(𝑝*)+8| = 1.5. 

For  𝑖 ∈ 𝛼, 𝑗 ∈ 𝛽 ∪ 𝛾  
L|(𝑝*)!!| − 𝑟*1(𝑃*)M n|(𝑝*)88| − 𝑟8

4∪6(𝑃*)o = 71.5 > 𝑟8
4∩6(𝑃*). 𝑟81(𝑃*) = 1																					   (32) 

      All  the conditions of theorem 1 are satisfied, hence 𝑃 is 𝛼-SDD and nonsingular. 
Confirmation that the 𝛴-strict diagonal dominance property is preserved through 𝑘-subdirect sums. 
Generalization of known results for 𝛴-SDD matrices to include partial overlap cases. The resulting 
matrix 𝑃 is nonsingular, enabling its use in linear systems. 
Theorem 2: [2]  Let 𝑀 ∈	𝐶#",#" , 𝑁 ∈ 𝐶##,## , with 𝑛* ≥ 2, 𝑎nd	1 ≤ min(𝑛*, 𝑛+).	Define the index sets 𝛼, 𝛽, 𝛾 
as in (5). For 𝑀 and 𝑁 partitioned as in (3), where 𝑀++		, 𝑁** ∈ 𝐶,×, ,	the corresponding diagonal entries 
of 𝑀++	and 𝑁** are assumed to have the same sign pattern. For an arbitrary  index set 𝛴 ⊆ {1,2, … , 𝑛},  
where 𝑛 = 𝑛* + 𝑛+ − 𝑘, define as 𝛴: = 𝛴 ∩ (𝛼 ∪ 𝛽) and 𝛴; = 𝑖 − 𝑡 ∶ 	𝑖 ∈ 𝛴 ∩ (𝛽 ∪ 𝛾). If the following 
conditions hold: 

1. 𝑀 is an 𝛴:-SDD matrix, 
2. 𝑁 is an 𝛴;-SDD matrix, 
3. 𝐽:(𝛴:) ∩ 𝐽;(𝛴;) ≠ ∅. 

then the 𝑘-subdirect sum 𝑃 = 𝑀⨁,𝑁 is an 𝛴-SDD matrix. 
Proof. Choose an index 𝑥 ∈ 𝐽:(𝛴:) ∩ 𝐽;(𝛴;) (this intersection is nonempty by assumption). Construct 
the scaling matrices 𝑋#"(𝛴: , 𝑥)	𝑎nd	𝑋##(𝛴;, 𝑥). Since 𝑀 is 𝛴:-SDD and 𝑁 is 𝛴;-SDD, the scaled 
matrices 𝑀𝑋#"(𝛴: , 𝑥)	𝑎nd	𝑁𝑋##(𝛴;, 𝑥)  are strictly diagonally dominant (SDD). 
Now, form the matrix  𝑋#(𝛴, 𝑥)		It can be verified that: 

                                    𝑃𝑋#(𝛴, 𝑥)	 = 𝑀	𝑋#"(𝛴: , 𝑥)⨁,𝑁	𝑋##(𝛴;, 𝑥)																																																(33) 
Since the 𝑘-subdirect sum of two SDD matrices with the diagonal entries of the overlapping 
blocks 𝑀++ and 𝑁++  having the same sign pattern is again an SDD matrix, it follows that 𝑃𝑋#(𝛴, 𝑥) is 
SDD. Therefore,  P is 𝛴	-SDD. 
    To demonstrate the practical necessity of the conditions established in theorem 2, we construct the 
following numerical illustration. This case examines how the k- subdirect sum fails to preserve the 𝛴	-
SDD property when the scaling interval requirement is violated. 
Example 2 Consider the matrices  𝑀+ and 𝑁+ defined with the following parameters: 

                                        𝑀+ = 𝑁+ = X
2.0 0.8 0.6
0.7 1.5 0.9
0.5 0.8 2.2

Z                                                       (34) 

From a structural standpoint, 𝑀+ and 𝑁+ are both {1,2}-SDD matrices and {3}-SDD matrices. To observe 
how these properties interact during matrix fusion, we construct their 2- subdirect sum, 𝑃+ = 𝑀+⊕+ 𝑁+, 
which results in the following: 

𝑃+ =

⎣
⎢
⎢
⎢
⎡
2.0 0.8 0.6 0 0
0.7 1.5 0.9 0 0
0.5 0.8 4.2 0.8 0.6
0 0 0.7 1.5 0.9
0 0 0.5 0.8 2.2⎦

⎥
⎥
⎥
⎤
                                                  (35) 

 To diagnose the failure of 𝑃+ to inherit the 𝛴	-SDD property, we take 𝛴 = {3}. Based on the framework 
of theorem 2, the corresponding parameters are: 

1. 𝛴: = 𝛴 ∩ (𝛼 ∪ 𝛽) = {3}, 
2. 𝛴; = 𝑖 − 𝑡: 𝑖 ∈ 𝛴 ∩ (𝛽 ∪ 𝛾) = 1, where 𝑡 = 𝑛* − 𝑘 = 3 − 1 = 2. 

Our calculations confirm that the scaling intervals are 𝐽:(𝛴:) = (0.75,1.25), and 𝐽;(𝛴;) = (1.6,2.4). it is 
evident that  𝐽:(𝛴:) ∩ 𝐽;(𝛴;) = ∅.	 
      Hence, the subdirect sum 𝑃+	fails to be 𝛴-SDD due to the empty intersection of the scaling intervals, 
demonstrating that the subdirect sum of two 𝛴-SDD matrices is not necessarily 𝛴-SDD. 
Final, the subdirect sum 𝑃+ = 𝑀+⨁+𝑁+ is 𝛴-SDD (specifically SDD) despite non-overlapping intervals 
𝐽:"LΣ:"M	and	𝐽;"LΣ;"M, which demonstrates that the sufficient condition of theorem 2 is not necessary. 
Applications of 𝜮 -SDD matrices: 
     You might wonder why we study these matrices. Well, the 𝛴 -SDD property is actually very helpful 
in many real life tasks. First in Electricity These matrices use to map out power grids because of the 
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special properties we discussed, computers can sole these problems faster. And 𝛴-SDD use in 
Engineering When we combine different systems, we must make sure the whole thing stays stable. 
Adding these matrices helps us know that the system won't fail. Finally in business and economics 
When mix date from different markets we are basically adding matrices keeping this property ensures 
our economic models don't give us wrong or crazy results. 
Conclusion: 
     This research has extended the theory of S-strictly diagonally dominant matrices to the more general 
class of  𝛴-SDD matrices. We have provided complete characterizations for when the k-subdirect sum 
and conventional sum of 𝛴-SDD matrices preserve the 𝛴-SDD property. The results contribute to the 
understanding of matrix structures and their preservation under various operations, with potential 
applications in numerical linear algebra and computational mathematics. 
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