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Abstract:

In this research, we extend the existing results on subdirect sums of S-strictly diagonally dominant
matrices to the more general class of X-Strictly Diagonally Dominant (¥-SDD) matrices. As X-SDD
matrices form a proper superclass of S-SDD matrices and a subclass of H-matrices, we investigate their
structural properties under matrix combination operations. Specifically, we provide a complete
characterization of the conditions under which the k-subdirect sum of two X-SDD matrices preserves
the X-SDD property. Furthermore, we establish when the conventional sum of two X-SDD matrices
remains X-SDD. These results broaden the understanding of diagonal dominance under scaling and
contribute to the study of matrix stability within hierarchical subclasses of H-matrices.
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Introduction

The k-subdirect sum operation on square matrices arises naturally in several computational and
algebraic contexts, where it provides a structured framework for combining matrix blocks while
preserving key stability-related properties [2,8]. One of the most fundamental matrix classes associated
with such operations is the class of strictly diagonally dominant (SDD) matrices [4], characterized by
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the requirement that each diagonal entry exceeds, in absolute value, the sum of all off-diagonal entries
in the corresponding row.

Recent developments have extended this concept to the broader class of X-Strictly Diagonally
Dominant (X-SDD) matrices [2], in which diagonal dominance is defined through a summation involving
scaled or partitioned off-diagonal entries. The symbol “2” reflects the use of weighted or structured
summations that generalize the classical SDD condition. As a result, 2-SDD matrices form a proper
superclass of S-SDD matrices and a subclass of H-matrices, the latter being characterized by
comparison matrices that satisfy strict diagonal dominance [5,6].

Understanding how X-SDD matrices behave under matrix addition is crucial for applications in
numerical analysis, iterative methods, and block-structured matrix computations. Specifically,
determining the conditions under which the sum of two X-SDD matrices remains within the same class
has important implications for matrix stability and convergence theory. Likewise, analyzing the
preservation of the X-SDD property under the k-subdirect sum operation provides insight into how
diagonal dominance behaves under structured block combinations.

Specifically, this research follows the theoretical framework of Bru and Cvetkovic, et al (2008)[2].
Our goal is to verify their findings on 2-SDD matrix sums using a simplified notation and numerical
examples, we build upon existing results for S-SDD matrices and extend them to the more general X-
SDD framework. We begin by recalling the essential definitions and preliminary concepts needed
throughout the paper [2,6,8].

Preliminaries and Definitions:
Definition 1: [6] A matrix M = [m;;] € C™" is called an SDD matrix if, for each i € N, it holds that

Imy; | > (M) e
It is well known that.
Definition 2: Consider a square matrix M = [mij] € C™",wheren = 2, Let X be a non-empty proper
subset of the index set N = {1,2,....n}. We categorize M as a X-strictly diagonally dominant (£-SDD)
matrix if the following inequalities are satisfied:

|my| >r*(M) foralli € X and

(Il = rE(M)a;| — 7 (M) > = (M)r# (M) foralli € 3,j € ¢ (2)

If ¥ =M (and thus ¥ = 9), the conditions reduce to |m;| > r;(M) for all i € N,. This is simply the
standard definition of a strictly diagonally dominant (SDD) matrix. The definition above is a slight
modification of the one given in [4], where the case X = N was excluded. However, this omission is
inconsequential: if a matrix is SDD, it automatically satisfies the X-SDD property for every nonempty
proper subset X c N.

Definition 3: Let M = (m;;) € C™™. If |m| > R;(M),V,€ N, then M is said to be a strictly diagonally
dominant matrix and denoted M € D, If there exists a positive diagonal matrix X such that MX € D, then
M is said to be a generalized strictly diagonally dominant matrix (i.e. nonsingular H- matrix) and denoted
M e D*.

Subdirect Sum of Matrices:

As in [4][8][2], Let M and N be two square matrices of order n, and n,, respectively, and let k be an
integer such that 1 < k < min(n,,n,). Let M and N be partitioned into 2 x 2 blocks as follows,
_ Mll MlZ] N = [Nll NIZ] (3)

M21 M22 ’ N21 N22
where M,, and N,, are square matrices of order k. [8], we call the square matrix of order n = n, +
n, — k given by

M4 M, 0
P=|My; M;; + Ny Ny (4)
0 N3y N,

the k-subdirect sum of M and N and denote itby P = M @, N.
Each element p;; of the resulting matrix P = M &, N can be explicitly constructed from the elements
of M and N. For precise formulation, we define the following index subsets

a={12,..ny—k}, Bp={ny—k+1,n—k+2,...n}y=n+1Ln—-k+2,..,n (5)
withnotethata U B Uy ={1,2,...,n} and thatn =t + n,.
Let P = p(;) be a matrix, and by defining t = n, — k, we can write
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m;j i €aq, jEaUP

0 iep,  jey
m;j iep, jEa
pij = my+n_j LEP, JjEP (6)
Ni_tj-t L EP, jEvY
0 i€eB, jea
ni_j-¢ LEY, JEBUY

Main Theorems for k-Subdirect Sums:
Theorem 1: [4] Consider two square matrices M and N with dimensions n; X n,and n, x
n, respectively, where n, > 2. let K be an arbitrary integer within therang 1 < K < min(n,,n,). Define
the index sets a, 8,y as in (5). Partition M and N as in (3). Let 2 be a set of indices of the form ¥ =
{1,2, ...} suppose that:

1. M is X-strictly diagonally dominant, with |Z]| < |a].

2. N be strictly diagonally dominant.

3. All diagonal entries of M,, and N;, are positive (or all negative).

Then the k-subdirect sum P = M @, N is X-strictly diagonally dominant, and consequently nonsingular.
Proof. We begin our prove the case which X = a. Given the property that M is a-strictly diagonally
dominant, it follows that:

Foralli € a:
Imy;| > 18 (M) = ¥jea|myj| (7)
J#i
andforalli € a,j € B:
(gl = @) (|my| =5 ) > 5 (e (1) (8)

Note that M is of order n,; then the complement of « in {1,2,...,n,} is B. We want to show that P is also
an a-strictly diagonally dominant matrix, i.e., we must show that

1. |pyl > r#(P)Vi € a.

2. (Ipal =7 @) (Ipjs] =77 ) > " Py (Pyvi € a,vj € pUy. ©)
Since P is of order n = n, + n, — k, the complement of @ in {1,2, ...,n}is B U y.
Proof of condition (1): using equation (6), and part 1 of (9).
to obtain

Ipul = Imy| > (M) = r*(P),Vi € a. (10)

Proof of condition (2): We distinguish two cases: j € fandj € y.
Ifj € B, (recallthatt = n, — k):
From (6) we have the following relations:

TP = Sjencaltp = ). |myl =1 ), (11)
j*kkea
P = o= Y el Y ekl =@ e, a2
j#k,keEBUy j#k,kEB j#kkey

T}B(P) = Z |y + 1y geel, (13)

Jj#k,kEB
)= D |nyeie] =500, (14)

j*k key
Pjj =My g (15)

Therefore we can write
(Il = 75P)) (Ipss| =77 (P))
= (Imyl — (M) (|m]~j + nj_t‘j_t| - GB(P) - gy(P)),Vi Ea,VjEP (16)
Starting with the substitution p;; = m;;, indices i € a and equations (12) and (15). If the diagonal entries
of both sub-matrices M,, and N, carry the same sign whether positive or negative the absolute value

of their sum simplifies directly to:
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[my; + e jel = Imyj | + g j¢l
We can now update our main inequality. By substituting these new values (16) as:

(Ipil = r#(P)) (|pjj| - GBUY(P))
= (il =r00) (Imy | + oy =7/ @) = /(). Viewje p

Next, we examine the right hand of the equation (17). By applying (13) the triangle inequality principle,
we can establish an upper bound for the row sum as follows:

GB(P)= Z |mjk+nj—t,k—t|S Z |mjk|+ Z |n]'—t,k—t|

a7

j£kkeB Jj#k,kEB Jj#kkep
=P ++7 (V) (18)
Using (14), from (18) we obtain the following inequality:
|yl + Iy el = 17 () =17 (P) = [y + [y e | = 7 ) =7 (M) =77 (), (19)

Since we have rjlzt(N) +17 (N) = rj’ffy, we obtain
[ + 1yl =17 P) =17 () = [y | =7 O + Py =2 20
This allows us to transform (17) into:
(Ipal = @) (| =577 (PY) =
(el =) (| =58 D) + e = 7Y (W) Vi € @ vj € B, (21)
Since (|my| —r*(M)) is positive (as M is a-SDD) and |nj_t,j_t| - rj‘ify(N) is also positive (as N is
SDD), we have,
[ =77 M) + [y o] =127 ) > [y | =7 () (22)
This jointly with (18) leads to the strict inequality
(pal =15P)) (Ipssl =577 PY) > (Imal =2 @0) (Imy;| - 5F ), Vieavjep  (23)
Finally, using 2 of (9) and equation (11):
(mal = @) (Jmy| = 5 ) > o ) v ) =Y (Pyr(P), vieavjep  (24)
which allows us to transform equation (23) into the inequality

(Il = @) (Ipys =577 P)) > " (Pyr(P), i € @, vj € B (25)
Ifj v,
From (6):
7}a(P) = Zj:tk,kea|ij| =0. (26)
Therefore, the condition 2 of (9) becomes
(Pl = @) (Ipjsl =777 P)) >0, vieavj €y, (27)

This inequality is fulfilled since:
The first term is positive: |p;;| — r*(P) = |m;;| — r*(M) > 0.

The second term of (27) is also positive: p; = n;_. ;.. for all j € y and

T}BUY(P) = Zj:tk,keﬁuy|ij| = Zj:tk,keﬁuy'nj—t,k—t' = Glil;y(N)' Vji€Ey, (28)
Since N is strictly diagonally dominant we have
Inj_eje] = 2T > 0,9 €y (29)

Therefore equation (27) is fulfilled, which completes the proof for the case where ¥ = a. When
|Z| < |al, the proof is analogous. With the key point being the subcase j € a\Z, a condition similar to 2)
for P in (9) still holds. We provide an illustrative example of theorem 1 with a practical application of
the proof.
Example 1 Consider the following matrices:

8 1 05 6 05 05
M,=lo5 7 1|  N=|o5 9 1] (30)
05 05 6 05 1 8

withn, =n, =3, k=1, and ¥ = a = {1,2}. Matrix M; is «-SDD, matrix N, is SDD, and the diagonal
entries of (M,),, and (N,),, are positive. The 1-subdirect sum
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8 1 05 O 0
05 7 1 0 0
P, =M;®;N, =|05 05 12 05 0.5 (31)
0 0 05 9 1
0 0 1 1 8
For i€a= {1'2}1 |(p1)ii| > ria(Pl)l
P11 =8>1{'(P1) = @12l + 113l = 1.5, (P1)22 = 7 > 15 (Py) = [(P)21] + |(P1) 23] = 1.5.
Forieajepuy
(I@Dul =) (Il =7 (P)) = 715 > e (P15 (P) = 1 (32)
All the conditions of theorem 1 are satisfied, hence P is a-SDD and nonsingular.
Confirmation that the X-strict diagonal dominance property is preserved through k-subdirect sums.
Generalization of known results for X-SDD matrices to include partial overlap cases. The resulting
matrix P is nonsingular, enabling its use in linear systems.
Theorem 2: [2] LetM € C™™,N € C™2"2, withn, = 2,and 1 < min(n,, n,). Define the index sets , B,y
as in (5). For M and N partitioned as in (3), where M,, ,N;; € C**¥, the corresponding diagonal entries
of M,, and N,, are assumed to have the same sign pattern. For an arbitrary index set » c {1,2,...,n},
where n =n, +n, —k, define as X, =2n(aup) and Xy =i—t: i€ X n(BUy). If the following
conditions hold:
1. M is an X,~-SDD matrix,

2. N is an X,-SDD matrix,

3. Ju@u) nJy(Ey) # 0.

then the k-subdirect sum P = M@, N is an X-SDD matrix.
Proof. Choose an index x € J,,(Z,,) N Jy(Zy) (this intersection is nonempty by assumption). Construct
the scaling matrices X,,, (Zy, x) and X,,,(Zy,x). Since M is X,,-SDD and N is Xy-SDD, the scaled
matrices MX,, (Zy,x) and NX,,(Zy,x) are strictly diagonally dominant (SDD).
Now, form the matrix X, (2, x) It can be verified that:

PX,(Z,x) =MX,, (Zy, x)®iN X;, Zy, x) (33)
Since the k-subdirect sum of two SDD matrices with the diagonal entries of the overlapping
blocks M,, and N,, having the same sign pattern is again an SDD matrix, it follows that PX,, (2, x) is
SDD. Therefore, Pis X -SDD.

To demonstrate the practical necessity of the conditions established in theorem 2, we construct the
following numerical illustration. This case examines how the k- subdirect sum fails to preserve the X -
SDD property when the scaling interval requirement is violated.

Example 2 Consider the matrices M, and N, defined with the following parameters:
20 0.8 0.6
M,=N,=107 15 0.9]
05 08 22
From a structural standpoint, M, and N, are both {1,2}-SDD matrices and {3}-SDD matrices. To observe
how these properties interact during matrix fusion, we construct their 2- subdirect sum, P, = M, &, N,,
which results in the following:

(34)

20 08 06 0 O
07 15 09 0 0

P,=(05 08 42 08 06 (35)
0 0 07 15 09

0 0 05 08 22
To diagnose the failure of P, to inherit the 2 -SDD property, we take X = {3}. Based on the framework

of theorem 2, the corresponding parameters are:
1. Zy=2n(aup)={3}
2. Yy=i—-tiieXn(PBuy)=1,wheret=n—-k=3-1=2.
Our calculations confirm that the scaling intervals are J,(Z,) = (0.75,1.25), and Jy(Zy) = (1.6,2.4). it is
evident that J,,(X,) NJy(Zy) = 0.
Hence, the subdirect sum P, fails to be X-SDD due to the empty intersection of the scaling intervals,
demonstrating that the subdirect sum of two X-SDD matrices is not necessarily X-SDD.
Final, the subdirect sum P, = M,®,N, is X-SDD (specifically SDD) despite non-overlapping intervals
Ju,(Z,) and Jy, (Zy, ), which demonstrates that the sufficient condition of theorem 2 is not necessary.
Applications of X -SDD matrices:
You might wonder why we study these matrices. Well, the X -SDD property is actually very helpful
in many real life tasks. First in Electricity These matrices use to map out power grids because of the
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special properties we discussed, computers can sole these problems faster. And ¥-SDD use in
Engineering When we combine different systems, we must make sure the whole thing stays stable.
Adding these matrices helps us know that the system won't fail. Finally in business and economics
When mix date from different markets we are basically adding matrices keeping this property ensures
our economic models don't give us wrong or crazy results.

Conclusion:

This research has extended the theory of S-strictly diagonally dominant matrices to the more general
class of X-SDD matrices. We have provided complete characterizations for when the k-subdirect sum
and conventional sum of X-SDD matrices preserve the X-SDD property. The results contribute to the
understanding of matrix structures and their preservation under various operations, with potential
applications in numerical linear algebra and computational mathematics.
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