

## A Comprehensive Review of Li-Fi Systems for Text and Data Transmission

Massoud A. Omer Imaezeg<sup>1\*</sup>, Yaser S. A. Shaheen <sup>2</sup>, Amier A. Frag<sup>3</sup>

<sup>1,2</sup>Department of Electrical and Electronic Engineering, College of Engineering Technologies-Al Qubbah, Al Qubbah, Libya

<sup>3</sup>Department of Computer Engineering, College of Engineering Technologies-Al Qubbah, Al Qubbah, Libya

### مراجعة شاملة لأنظمة (Li-Fi) لإرسال النصوص والبيانات

مسعود امزيج<sup>1\*</sup>، ياسر شاهين<sup>2</sup>، أمير علي<sup>3</sup>

قسم الهندسة الكهربائية والالكترونية كلية التقنيات الهندسية، القبة، ليبيا<sup>1,2</sup>

قسم هندسة الحاسوب، كلية التقنيات الهندسية، القبة، ليبيا<sup>3</sup>

\*Corresponding author: [Massoud@cteq.edu.ly](mailto:Massoud@cteq.edu.ly)

Received: November 21, 2025 | Accepted: January 10, 2026 | Published: January 26, 2026

**Copyright:** © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

#### Abstract:

Text transmission via Li-Fi is shown to be feasible across multiple prototype systems. One study describes a low-cost setup that sends text using an LED, an ATmega16L, an operational amplifier, and a photodiode with binary on/off encoding, reporting “top notch” speed, efficiency, and security. Two other studies employing LED bulbs and photodiode receivers use light intensity modulation to send both text and images at speeds of 10 Mbps (with a goal of 100 Mbps), while another system using high-power LED arrays reports rates up to 500 Mbit/s. Most implementations rely on simple LED sources paired with photodiodes (often supported by microcontrollers such as Arduino, ATmega16L, or PIC) and achieve high security, though limitations in range and a requirement for line-of-sight are noted. Several studies explicitly state that text messaging can be managed by encoding techniques such as binary mapping (including Morse code) or by varying LED current intensity. These results support sending text using Li-Fi technology when systems use off-the-shelf components and standard protocols, achieving competitive and sometimes superior performance compared with traditional wireless communication.

**Keywords:** Li-Fi, VLC system, Photodiode, Light modulation technique.

#### الملخص:

لقد ثبت من خلال عدة دراسات امكانية نقل البيانات بواسطة الضوء المرئي أو ما يسمى بـ (Li-Fi) هذه التقنية يمكن تصميمها بواسطة دوائر الكترونية بسيطة نوردها تباعاً في هذه الدراسة حيث تصنف إحدى هذه الدراسات نموذج دائرة الكترونية منخفضة التكلفة ترسل نصاً باستخدام الثنائي الضوئي (LED) و متحكم دقيق (ATmega16L) و مكبر عملياتي (Operation Amplifier) وثنائي تأثير الضوء (Photodiode) كمستقبل لإشارة رقمية مشفرة على هيئة (Off / On) حيث أثبتت هذه البنية البسيطة سرعة وكفاءة وأمان من الدرجة الأولى و تفید دراسات أخرى أن أداءها تستخدم مصابيح LED وأجهزة للتحكم في شدة استضاءة الثنائيات الضوئية لإرسال النصوص والصور بسرعات تصل إلى 10 ميجابت في الثانية (وإمكانية الوصول إلى 100 ميجابت في الثانية) وآخر تستخدم الثنائي ذو قدرة عالية أو مصفوفة ثنائية للوصول إلى معدل نقل بيانات 500 ميجابت في الثانية. تعتمد معظم هذه التطبيقات على مرسلة ضوئية عبارة عن الثنائي ضوئي (LED) غالباً ما تدعى وحدات التحكم الدقيقة مثل (Arduino)، (ATmega16L)، (PIC) أو

وتحقق أماناً عالياً على الرغم من محدودية نطاق الارسال المقيدة بمسافة الإضاءة لذلك يمكن الاستفادة من هذه التقنية في الأماكن الداخلية (الغرفة الصالات والأماكن المحجزة بجدر). تشير العديد من الدراسات صراحةً إلى أنه يمكن إدارة الرسائل النصية من خلال تقنيات الترميز مثل التضمين الثنائي (بما في ذلك شفرة مورس) أو عن طريق تغيير شدة استضاءة الـ LED، تخبر هذه الدراسات أيضاً بشكل صريح إمكانية إرسال البيانات بواسطة الضوء و عن طريق بروتوكولات نقل البيانات بطريقة تنافسية مقارنة مع الطرق التقليدية لنقل البيانات لاسلكياً.

الكلمات المفتاحية: تقنية لاي فاي، الاتصال بواسطة الضوء المركبي، الثنائي الضوئي، تقنية التضمين الضوئي.

### **Introduction:**

In the ever-shifting world of wireless communication, Light Fidelity (Li-Fi) is a revolutionary technology that utilizes the visible light spectrum to transfer data at unprecedented speeds. Unlike Wi-Fi and other RF systems, Li-Fi uses light-emitting diodes (LEDs) to encode and transmit information, creating a new paradigm for fast, safe, and interference-free communication. The fundamental architecture of Li-Fi is remarkably simple: a transmitter modulates the intensity of light from an LED source, while a photodiode receiver decodes the fluctuations into digital data. This simplicity translates into reduced hardware complexity and significantly lower implementation costs, making Li-Fi an attractive solution for both industrial and consumer applications.

This paper aims to synthesize the collective insights from these studies, highlighting the technological potential of Li-Fi as a next-generation communication medium. By examining its structural elegance, cost-effectiveness, and superior data handling capabilities, we seek to establish a comprehensive understanding of Li-Fi's role in shaping the future of wireless communication.

### **Paper search:**

To answer the research question of 'Send data using Li-Fi technology', we searched for academic papers in the Semantic Scholar corpus. Out of the 50 papers that were most relevant to the query, we retrieved the most relevant ones.

### **Screening:**

#### **Sources that met these criteria were screened by us:**

- **Technology Focus:** Does the study investigate Li-Fi (Light Fidelity) or visible light communication (VLC) systems for text or data transmission?
- **Study Design and Validation:** Is the study an experimental study, pilot study, case study, or technical evaluation with actual testing or validation of text transmission capabilities (not purely theoretical or simulation-only)?
- **Performance Metrics:** Does the study report on system performance metrics relevant to text transmission (such as transmission speed, error rates, or reliability)?
- **Communication Application:** Does the study demonstrate Li-Fi communication applications in any environment (laboratory, indoor, or outdoor settings)?
- **Publication Type:** Is the study a full research article, systematic review, or meta-analysis (not a conference abstract, editorial, or opinion piece without original research data)?
- **Text/Data Transmission Focus:** Does the study include text or data transmission components (not focusing solely on audio, video, or multimedia transmission without any text/data component)?
- **Li-Fi/VLC Technology Specificity:** Does the study focus on Li-Fi or VLC technology (not other optical communication technologies like infrared or laser communication)?
- **Primary Focus Relevance:** Is Li-Fi or VLC the main focus of the study (not mentioned only peripherally or as a minor component)?

We considered all screening questions together and made a holistic judgment about whether to screen in each paper.

### **Data extraction:**

We asked a large language model to extract each data column below from each paper. We gave the model the extraction instructions shown below for each column:

- **Li-Fi Technology Configuration:**

Describe the specific Li-Fi technology configuration used in the study, including:

- Transmission medium (e.g., LED type, light spectrum used)
- Transmitter components (e.g., LED, Arduino, microcontroller)
- Receiver components (e.g., photodiode, IR detector)
- Communication method (binary encoding, light modulation technique)

Look in the methods or technical description sections. If multiple configurations are described, list all. Be precise about specific technologies or components used. If any details are unclear or partially described, note this in your extraction.

**Example extraction format:**

- Transmitter: High-power LED, Arduino Uno, binary encoding (0 = LED OFF, 1 = LED ON)
- Receiver: Photodiode module, IR detector

**Data Transmission Characteristics:**

**Extract specific details about the data transmission:**

- Types of data transmitted (text, image, audio).
- Transmission speed or bandwidth.
- Maximum transmission distance.
- Signal encoding method.

Locate this information in the results, methods, or technical performance sections. If multiple data types or speeds are reported, list all. Include units of measurement (Mbps, meters). If exact figures are not provided, note the qualitative description.

**Example extraction format:**

- Data types: Text, image
- Transmission speed: 100 Mbps
- Maximum distance: 10 meters

**Experimental Methodology:**

**Describe the experimental approach:**

- Software used for design/simulation
- Programming languages
- Specific hardware platforms
- Experimental setup and testing protocol.

Search methods, technical implementation, and design sections. Be specific about tools, languages, and experimental approaches. If multiple approaches are used, list comprehensively.

**Example extraction format:**

- Design software: Proteus 8 Professional
- Programming: C language
- Microcontroller: PIC microcontroller
- Testing protocol: Image and text transmission validation

**Performance Outcomes and Limitations:**

**Extract key performance outcomes and identified limitations:**

- Successful transmission results
- Comparative performance (vs. WiFi)
- Technical challenges encountered
- Potential improvements suggested

Look in results, discussion, and conclusion sections. Capture both quantitative performance metrics and qualitative assessments. If multiple outcomes are reported, list comprehensively.

**Example extraction format:**

- Transmission success: Confirmed text and image transfer
- Comparative performance: Higher security than WiFi
- Limitations: Restricted to line-of-sight communication

**Results and discussion:**

Visible Light Communication (VLC), commonly referred to as Li-Fi, has emerged as a promising optical wireless communication technology that exploits light-emitting diodes (LEDs) for simultaneous illumination and data transmission. Owing to its inherent advantages, such as high bandwidth availability, enhanced security, immunity to electromagnetic interference, and suitability for indoor environments, Li-Fi has attracted increasing research attention across a wide range of applications, including text, image, audio, video, and vehicle-to-vehicle communications.

Table (1) summarizes the key characteristics of the studies included in this review, highlighting their research focus, hardware configurations, transmitted data types, and reported performance metrics. The surveyed studies demonstrate a strong emphasis on low-cost and prototype-based

implementations, typically relying on LEDs, photodiodes or light-dependent resistors (LDRs), and microcontroller platforms such as Arduino and ATmega series. Most works concentrate on text and image transmission, while more recent studies extend VLC applications to multimedia data, including audio and video streams, as well as vehicular communication scenarios.

**Table (1):** Characteristics of Included Studies

| Study                              | Study Focus                                             | Hardware Configuration                                                                | Data Types Transmitted     | Performance Metrics                                                    | Full text retrieved |
|------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------|---------------------|
| Ifada et al., 2019                 | Low-cost Li-Fi system for text transmission             | LED, ATmega16L microcontroller, operational amplifier (OpAmp), photodiode             | Text                       | Qualitative: "top notch" speed, efficiency, security, capacity         | No                  |
| Ramakrishnan and Nanda kumar, 2023 | Image and text transmission via Li-Fi                   | LED bulb, photodiode receiver                                                         | Image, text                | 10 Mbps (goal: 100 Mbps); high security; line-of-sight limitation      | Yes                 |
| Zad et al., 2023                   | Image and text transmission via Li-Fi                   | LED bulb, photodiode receiver                                                         | Image, text                | 10 Mbps (goal: 100 Mbps); faster than Wi-Fi; range limitation          | Yes                 |
| Madhuri et al., 2020               | Audio and text transmission using Arduino-based Li-Fi   | High-power LEDs, Arduino, photodiode module, infrared detector                        | Audio, text                | Qualitative higher speed than Wi-Fi                                    | No                  |
| Bolla et al., 2019                 | Audio and text transmission; indoor services            | LEDs (type not specified)                                                             | Audio, text                | Qualitative: high data rate, durability                                | No                  |
| Sonawane et al., 2022              | Complete data transmission (audio, video, text, images) | High-power white LED arrays, control unit, photodiode, light-dependent resistor (LDR) | Audio, video, text, images | Up to 500 Mbit/s (LED), 10 Kbit/s (lamps); short range; high security  | Yes                 |
| Vasuja et al., 2018                | Image and text transmission; prototype design           | LED, PIC microcontroller, photodiode/phototransistor                                  | Image, text                | Qualitative: higher security than Wi-Fi                                | No                  |
| George et al., 2019                | Review of Li-Fi for vehicle-to-vehicle communication    | No mention found                                                                      | No mention found           | Qualitative: secure, efficient, high rate                              | No                  |
| Begam et al., 2021                 | Arduino-based alphanumeric and image transmission       | LED, Arduino, keypad, light-dependent resistor (LDR)/photodiode                       | Alpha-numeric, image       | Qualitative: successful transfer; implied line-of-sight restriction    | No                  |
| Ali Abdulsalm et al., 2015         | Vehicle-to-vehicle communication prototype              | LED bulbs                                                                             | No mention found           | Qualitative: initial results positive; simulation and experiment agree | No                  |

In terms of performance, the reviewed literature reports a wide range of outcomes, from qualitative assessments, such as improved security and higher data rates compared to Wi-Fi, to quantitative metrics reaching up to several hundred megabits per second under controlled conditions. However, the table also reveals notable variability in experimental rigor, documentation completeness, and availability of full-text sources. Collectively, these characteristics underline both the practical potential of Li-Fi systems and the existing gaps in standardized evaluation and reporting, thereby motivating further systematic analysis and optimization of VLC-based data transmission frameworks.

**Data types transmitted:**

- Text only: One study
- Image and text: Three studies
- Audio and text: Two studies
- Audio, video, text, images: One study
- Alpha-numeric and image: One study
- We didn't find mention of the data type in Two studies

**Performance metrics:**

- Quantitative data rates were reported in Three studies: 10Mbps (Two studies), up to 500Mbit/s (One study), and 10Kbit/s (lamps, One study)
- Nine studies included only qualitative performance descriptions (e.g., "high speed", "efficient", "secure"), with some overlap with quantitative reporting
- Security was mentioned as a feature in Five studies
- Limitations such as range or line-of-sight requirements were mentioned in Four studies
- We didn't find mention of any studies without at least qualitative performance metrics

Text transmission in visible light communication (VLC) and LED-based optical wireless systems relies fundamentally on the choice of encoding and modulation techniques, which directly affect data integrity, transmission efficiency, system complexity, and implementation cost. Encoding schemes define how textual or digital information is represented in binary or symbolic form, while modulation techniques govern how this information is physically conveyed through variations in light intensity, switching states, or temporal patterns of LEDs.

Table (2) presents a comparative overview of prior studies that have employed different text transmission, encoding, and modulation approaches in LED-based communication systems. The reviewed literature reveals a predominance of simple binary encoding schemes, most commonly LED ON/OFF signaling and on-off keying (OOK), owing to their ease of implementation on low-cost microcontrollers such as Arduino and ATmega platforms. Several studies rely on light intensity modulation without explicitly defining the underlying binary mapping, while others mention VLC applications without providing sufficient technical detail regarding encoding or modulation mechanisms.

**Table (2):** Text Transmission/Methods Encoding and Modulation Techniques

| Study                              | Encoding/Modulation Method        | Notes                                                 |
|------------------------------------|-----------------------------------|-------------------------------------------------------|
| Ifada et al., 2019                 | Binary encoding (LED on/off)      | ATmega16L microcontroller; no advanced modulation     |
| Ramakrishnan and Nanda kumar, 2023 | Light intensity modulation        | Varying LED current: no explicit binary encoding      |
| Zad et al., 2023                   | Light intensity modulation        | As above                                              |
| Madhuri et al., 2020               | Binary encoding (LED on/off)      | Arduino-based; explicit binary mapping                |
| Bolla et al., 2019                 | No mention found                  | Only general mention of visible light                 |
| Sonawane et al., 2022              | Binary encoding (Morse code, 0/1) | On-off keying; mentions Morse code                    |
| Vasuja et al., 2018                | No explicit description found     | Implied software encoding in C                        |
| George et al., 2019                | No mention found                  | Review; no technical details                          |
| Begam et al., 2021                 | No explicit mention found         | Implied binary via LED/light-dependent resistor (LDR) |
| Al Abdulsalam et al., 2015         | No mention found                  | No encoding details                                   |

Overall, the table 2 highlights a clear trend toward low-complexity, intensity-based modulation techniques, alongside a noticeable lack of standardized or well-documented encoding methodologies

in a significant portion of the literature. This gap underscores the need for clearer specification, systematic comparison, and optimization of encoding and modulation strategies to enhance the reliability and scalability of text transmission in VLC systems.

Hardware implementation plays a central role in determining the performance, reliability, and practicality of visible light communication (VLC) and Li-Fi systems. Beyond modulation and encoding strategies, the selection and integration of transmitter components, optical receivers, and control or processing platforms directly influence achievable data rates, transmission range, system robustness, and overall cost. Consequently, a clear understanding of prevailing hardware implementation approaches is essential for evaluating the current state of VLC-based communication systems.

Table (3) presents a comparative overview of the hardware architectures employed in the reviewed studies, focusing on the transmitter, receiver, and control/processing subsystems. The table captures the diversity of design choices adopted in experimental and prototype-based implementations, ranging from simple LED–photodiode links to more structured systems incorporating microcontrollers, high-power LED arrays, and software-based interfaces. By synthesizing these elements, the table provides insight into common design trends as well as variations in implementation complexity.

Table (3) provides a structured comparison of the hardware implementation approaches adopted in the reviewed VLC/Li-Fi studies by separating each prototype into three functional blocks: the transmitter, the receiver, and the control/processing layer. In general, the table indicates that most implementations rely on low-cost, readily available optical components, while the level of technical detail reported for control and processing varies considerably across studies.

From the transmitter perspective, the dominant trend is the use of LED-based sources, either in the form of standard LED bulbs or discrete LEDs and LED arrays. Several studies employ simple LED bulb transmitters, reflecting a practical design choice that prioritizes availability and ease of deployment. In contrast, other works adopt high-power LEDs or LED arrays, which typically support higher optical power budgets and potentially improved link stability, but also imply more stringent requirements in driver circuitry and thermal management. A notable example is the inclusion of a microcontroller-driven LED transmitter combined with an operational amplifier stage, suggesting additional analog conditioning and more deliberate signal shaping at the transmission side.

**Table (3):** Hardware Implementation Approaches

| Study                              | Transmitter                                   | Receiver                                   | Control/Processing    |
|------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------|
| Ifada et al., 2019                 | LED, ATmega16L, operational amplifier (OpAmp) | Photodiode                                 | Java interface        |
| Ramakrishnan and Nanda Kumar, 2023 | LED bulb                                      | Photodiode                                 | No mention found      |
| Zad et al., 2023                   | LED bulb                                      | Photodiode                                 | No mention found      |
| Madhuri et al., 2020               | High-power LEDs, Arduino                      | Photodiode, infrared detector              | Arduino IDE           |
| Bolla et al., 2019                 | LEDs                                          | No mention found                           | No mention found      |
| Sonawane et al., 2022              | High-power LED arrays, control unit           | Photodiode, light-dependent resistor (LDR) | Visual Basic Runtime  |
| Vasuja et al., 2018                | LED, PIC microcontroller                      | Photodiode/phototransistor                 | C language, Proteus 8 |
| George et al., 2019                | No mention found                              | No mention found                           | No mention found      |
| Begam et al., 2021                 | LED, Arduino, keypad                          | light-dependent resistor (LDR)/photodiode  | No mention found      |
| Al Abdulsalam et al., 2015         | LED bulbs                                     | No mention found                           | Proteus package       |

Regarding the receiver, photodiodes represent the most common detection element across the included studies, consistent with their suitability for intensity modulation-based communication due to their relatively fast response and improved sensitivity. Some studies also incorporate light-dependent resistors (LDRs), either as alternatives or complementary sensors. While LDRs are cost-effective and simple to interface, they are typically associated with slower response times and therefore may constrain achievable data rates or modulation bandwidth. Importantly, multiple studies provide no explicit description of the receiver configuration, which limits reproducibility and weakens the ability to compare performance outcomes across the literature.

The control and processing layer is the least consistently documented component in the reviewed studies. Where details are provided, the implementation environments reflect common prototyping ecosystems, including Arduino IDE-based development, C-language programming supported by Proteus simulation tools, and desktop-level interfaces such as Java or Visual Basic runtime. However, the frequent absence of information on the processing platform, decoding workflow, synchronization approach, or software architecture represents a methodological gap, particularly because these factors strongly influence end-to-end latency, decoding reliability, and system robustness.

Collectively, the table suggests that existing Li-Fi/VLC prototypes largely converge on a conventional architecture, LED transmitter and photodiode receiver, implemented with microcontroller-based or PC-assisted processing. At the same time, the table highlights a clear limitation in the literature: inconsistent reporting of hardware and processing details, especially at the receiver and control layers, which constrains systematic benchmarking and makes it difficult to attribute performance differences to specific design choices.

**Transmitter:**

- Seven studies used some form of LED as the transmitter (including LED, LED bulb, LED bulbs, LEDs, high-power LEDs, and high-power LED arrays).
- Two studies used microcontrollers or control units as part of the transmitter (ATmega16L, PIC microcontroller, Arduino, control unit).

**Receiver:**

- Photodiode was the most common receiver, found in seven studies.
- Two studies used light-dependent resistors (LDR) as a receiver.
- One study used an infrared detector.
- One study used a phototransistor.

**Control/Processing:**

- Java interface, Arduino IDE, Visual Basic Runtime, C language, Proteus 8, and Proteus package were each used in one study.
- We didn't find mention of control/processing information for four studies.

**Typical pairings:**

- Six studies paired an LED or LED bulb transmitter with a photodiode receiver.
- Two studies paired high-power LEDs or arrays with photodiode or LDR receivers.
- Other combinations (including phototransistor, infrared detector, control unit, keypad) were found in three studies.
- We didn't find mention of receiver information for three studies.

Overall, photodiode was the most common receiver, and LED-based transmitters were used in most studies. Control/processing approaches varied, and we didn't find this information for several studies.

Table (4) compares the reported data transmission rates across the included VLC/Li-Fi studies and, importantly, exposes a central limitation in the literature: most papers do not provide quantified throughput, relying instead on qualitative claims (e.g., "high data rate," "top notch," or "better than Wi-Fi"). This uneven reporting constrains objective benchmarking and makes cross-study performance comparisons difficult.

**Table (4): Performance Analysis Data Transmission Rates**

| Study                              | Data Rate                              | Notes                          |
|------------------------------------|----------------------------------------|--------------------------------|
| Ifada et al., 2019                 | No mention found                       | Qualitative: "top notch"       |
| Ramakrishnan and Nanda kumar, 2023 | 10 Mbps (goal:100 Mbps)                | Explicitly reported            |
| Zad et al., 2023                   | 10 Mbps (goal:100 Mbps)                | Explicitly reported            |
| Madhuri et al., 2020               | No mention found                       | Qualitative: higher than Wi-Fi |
| Bolla et al., 2019                 | No mention found                       | Qualitative: high data rate    |
| Sonawane et al., 2022              | Up to 500 Mbit/s (LED),10 Kbit/s lamps | Explicitly reported            |
| Vasuja et al., 2018                | No mention found                       | Qualitative: better than Wi-Fi |
| George et al., 2019                | No mention found                       | Qualitative: very high rates   |
| Begam et al., 2021                 | No mention found                       | No mention found               |
| Ali Abdulsalam et al., 2015        | No mention found                       | No mention found               |

Overall, Table (4) indicates that quantitative throughput reporting is the exception rather than the norm in this body of work. The table therefore highlights a methodological gap: future studies should standardize the reporting of data rate using clearly defined experimental conditions (e.g., modulation

method, distance, ambient light, receiver type, bandwidth, and error performance). Without these details, claims of "high" speed remain largely non-comparable and reduce the evidentiary strength of performance evaluations in VLC/Li-Fi research.

- Explicit quantitative data rate values were found in three out of ten studies:
- Two studies reported 10Mbps (with a goal of 100 Mbps)
- One study reported up to 500 Mbit/s (LED) and 10 Kbit/s (lamps)
- Only qualitative descriptions of data rate were found in five studies, using phrases such as "top notch", "higher than Wi-Fi", "high data rate", "better than Wi-Fi", and "very high rates".
- We didn't find mention of data rate information in two studies.

Transmission distance and signal quality are key performance dimensions in visible light communication (VLC) and Li-Fi systems, as they directly determine link reliability, coverage area, and suitability for practical deployment. Unlike conventional radio-frequency systems, VLC performance is strongly constrained by line-of-sight conditions, optical power levels, ambient light interference, and receiver sensitivity. Consequently, evaluating communication distance alongside signal quality metrics is essential for understanding the operational limits of VLC-based prototypes.

Table (5) presents a comparative overview of the implementation type, achieved data rate, maximum communication distance, and signal quality indicators reported in the reviewed studies. The table highlights how most existing works focus on prototype-level implementations, with performance assessment often emphasizing qualitative indicators such as security, interference resistance, and durability rather than precise quantitative measurements. By consolidating these aspects, the table provides insight into how distance and signal quality are addressed in current VLC research, while also revealing gaps in standardized reporting that limit direct comparison across studies.

**Table (5):** Distance and Signal Quality

| Study                              | Implementation Type | Data Rate              | Maximum Distance | Signal Quality Metrics                       |
|------------------------------------|---------------------|------------------------|------------------|----------------------------------------------|
| Ifada et al., 2019                 | Prototype           | No mention found       | No mention found | Qualitative: efficient, secure               |
| Ramakrishnan and Nanda kumar, 2023 | Prototype           | 10 Mbps                | No mention found | Minimal interference; high security          |
| Zad et al., 2023                   | Prototype           | 10 Mbps                | No mention found | Minimal interference; high security          |
| Madhuri et al., 2020               | Prototype           | No mention found       | No mention found | Qualitative: high speed                      |
| Bolla et al., 2019                 | Prototype           | No mention found       | No mention found | Qualitative: high durability                 |
| Sonawane et al., 2022              | Prototype           | Up to 500 Mbit/s (LED) | Short distances  | Bit error rate, noise management             |
| Vasuja et al., 2018                | Prototype           | No mention found       | No mention found | Qualitative: higher security                 |
| George et al., 2019                | Review/de mo        | No mention found       | No mention found | Qualitative: secure, efficient               |
| Begam et al., 2021                 | Prototype           | No mention found       | No mention found | Implied line-of-sight restriction            |
| Ali Abdulsalam et al., 2015        | Prototype           | No mention found       | No mention found | Qualitative: simulation and experiment agree |

- Data rate was not mentioned in seven out of ten studies. Of the remaining studies, two reported a data rate of 10Mbps, and one reported a data rate of up to 500 Mbit/s (using LED).
- For signal quality metrics, six studies provided only qualitative descriptions such as "efficient," "secure," "highspeed," "high durability," or "higher security." Two studies reported "minimal interference" and "high security." One study reported quantitative metrics, specifically bit error rate and noise management. One study implied a line-of-sight restriction, and one study stated that simulation and experiment results agreed.
- We did not find mention of quantitative signal quality metrics (such as bit error rate) in nine out of ten studies; only one study reported these metrics.

Table (6) presents a comparative overview of system architecture variations at the transmitter side, focusing on the specific components employed and the corresponding implementation notes reported in prior studies. The table highlights the spectrum of design approaches, ranging from simple LED bulb-based transmitters with minimal control logic to more structured architectures incorporating microcontrollers, operational amplifiers, and high-power LED arrays. This comparison enables identification of dominant design trends as well as gaps in documentation across the reviewed literature.

**Table (6):** System Architecture Variations Transmitter Configurations

| Study                              | Transmitter Components                        | Notes                         |
|------------------------------------|-----------------------------------------------|-------------------------------|
| Ifada et al., 2019                 | LED, ATmega16L, operational amplifier (OpAmp) | Off-the-shelf, cost-effective |
| Ramakrishnan and Nanda kumar, 2023 | LED bulb                                      | No microcontroller mentioned  |
| Zad et al., 2023                   | LED bulb                                      | No microcontroller mentioned  |
| Madhuri et al., 2020               | High-power LEDs, Arduino                      | Arduino IDE                   |
| Bolla et al., 2019                 | LEDs                                          | No further details            |
| Sonawane et al., 2022              | High-power LED arrays, control unit           | PC interface                  |
| Vasuja et al., 2018                | LED, PIC microcontroller                      | Proteus 8, C language         |
| George et al., 2019                | No mention found                              | Review                        |
| Begam et al., 2021                 | LED, Arduino, keypad                          | No mention found              |
| Al Abdulsalam et al., 2015         | LED bulbs                                     | No mention found              |

The comparison in Table (6) reveals that most VLC/Li-Fi studies favor simplified transmitter configurations, often based on readily available LED bulbs or discrete LEDs, reflecting a strong emphasis on cost-effectiveness and ease of prototyping. More advanced designs, such as those integrating microcontrollers, operational amplifiers, or high-power LED arrays, are less common but indicate greater attention to signal control, modulation precision, and system scalability. However, several studies provide limited or no detail regarding transmitter components, which restricts reproducibility and hinders systematic performance comparison.

Overall, the findings suggest that while basic LED-based transmitter architectures are sufficient for proof-of-concept demonstrations, achieving higher performance and robustness in VLC systems requires more explicitly defined and carefully engineered transmitter designs. Future research would benefit from standardized reporting of transmitter configurations and clearer justification of component selection, particularly as VLC technologies progress from experimental prototypes toward practical deployment.

#### **Microcontroller or control unit:**

- Two studies used Arduino (Madhuri et al., 2020; Begam et al., 2021)
- One study used ATmega16L (Ifada et al., 2019)
- One study used a PIC microcontroller (Vasuja et al., 2018)
- One study mentioned a control unit but did not specify the type (Sonawane et al., 2022)
- We didn't find mention of a microcontroller or control unit in four studies (Ramakrishnan and Nanda kumar, 2023; Zad et al., 2023; Bolla et al., 2019; Al Abdulsalam et al., 2015)
- We didn't find mention of transmitter component details for one study (George et al., 2019)

#### **Other transmitter components:**

- One study included an operational amplifier (OpAmp) (Ifada et al., 2019)
- One study included a keypad (Begam et al., 2021)
- One study included a PC interface (Sonawane et al., 2022)
- One study described the transmitter as off-the-shelf and cost-effective (Ifada et al., 2019)

The receiver subsystem is a critical component in visible light communication (VLC) and Li-Fi systems, as it directly determines the accuracy, sensitivity, and robustness of optical signal detection and decoding. Receiver design influences key performance parameters such as achievable data rate, noise tolerance, bit error performance, and resilience to ambient light interference. Therefore, examining receiver design approaches provides essential insight into the practical limitations and capabilities of VLC-based communication systems.

Table (7) presents a comparative overview of the receiver design approaches adopted in the reviewed studies, focusing on the types of optical sensors used and the associated implementation notes. The table highlights the prevalence of photodiode-based receivers, alongside alternative or complementary sensing elements such as light-dependent resistors (LDRs) and phototransistors. By

consolidating these design choices, the table enables identification of common trends, levels of design sophistication, and gaps in reporting across the VLC literature.

**Table (7):** Receiver Design Approaches

| Study                              | Receiver Components                        | Notes                         |
|------------------------------------|--------------------------------------------|-------------------------------|
| Ifada et al.,2019                  | Photodiode                                 | Java interface for monitoring |
| Ramakrishnan and Nanda kumar, 2023 | Photodiode receiver                        | No mention found              |
| Zad et al.,2023                    | Photodiode receiver                        | No mention found              |
| Madhuri et al.,2020                | Photodiode module, infrared detector       | Arduino-based                 |
| Bolla et al.,2019                  | No mention found                           | No mention found              |
| Sonawane et al.,2022               | Photodiode, light-dependent resistor (LDR) | Signal conditioning, UART     |
| Vasuja et al.,2018                 | Photodiode/phototransistor                 | No mention found              |
| George et al.,2019                 | No mention found                           | No mention found              |
| Begam et al.,2021                  | light-dependent resistor (LDR)/photodiode  | No mention found              |
| Ali Abdulsalam et al.,2015         | No mention found                           | No mention found              |

The comparison in Table (7) indicates that photodiodes are the dominant receiver component in most VLC/Li-Fi implementations, reflecting their suitability for high-speed optical detection and relatively linear response characteristics. In several studies, photodiodes are combined with additional elements such as LDRs or phototransistors to support simplified detection or hybrid sensing strategies. More advanced implementations incorporate signal conditioning and digital interfaces, suggesting improved attention to noise mitigation and data integrity. However, a substantial number of studies provide limited or no information regarding receiver design details, which significantly restricts reproducibility and comparative performance evaluation. The absence of standardized reporting on receiver components, conditioning circuits, and interfacing methods represents a notable gap in the literature. Future research should emphasize detailed and quantitative documentation of receiver architectures to facilitate benchmarking and to support the advancement of VLC systems from experimental prototypes to reliable, real-world communication solutions.

#### Conclusion:

The reviewed studies collectively highlight the transformative potential of Li-Fi technology in wireless communication. By leveraging visible light for data transmission, Li-Fi offers significant advantages in terms of bandwidth, speed, and security compared to traditional RF-based systems like Wi-Fi. However, the literature also reveals disparities in research focus, ranging from modulation techniques and system architecture to practical deployment challenges and environmental limitations. While some studies emphasize theoretical performance, others explore real-world applications in healthcare, transportation, and smart infrastructure. Overall, Li-Fi is positioned as a promising complement, not a replacement, to existing wireless technologies.

#### Recommendations:

- **Expand Real-World Testing:** Future research should prioritize large-scale, real-environment deployments to validate theoretical models and assess performance under diverse conditions.
- **Develop Hybrid Systems:** Integrating Li-Fi with Wi-Fi and 5G can ensure seamless connectivity and mitigate the limitations of line-of-sight requirements.
- **Address Technical Barriers:** Continued innovation is needed to overcome challenges such as signal obstruction, ambient light interference, and limited range.
- **Standardization and Regulation:** Establishing global standards and protocols will be essential for interoperability and widespread adoption.
- **Focus on Security and Privacy:** Given its confined transmission area, Li-Fi offers inherent security benefits, but further research should explore encryption and authentication mechanisms tailored to optical communication.

#### References

1. Asmita Pandit Sonawane, Janhavi Sanjay Pradhan, Vaibhavi Prakash Waghmare, Saurabh Kesari, S. Singh, and Prashant Pal. "Complete Data Transmission Using Li-Fi Technology with Visible Light Communication." 2022 International Conference on Futuristic Technologies (INCOFT), 2022.

2. Dileep Reddy Bolla, Shivashankar, R. Praneetha, and B. Rashmi. "LI-FI TECHNOLOGY BASED AUDIO AND TEXT TRANSMISSION." IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2019.
3. E. Ifada, N. Surajudeen-Bakinde, N. Faruk, A. Abubakar, O. Mohammed, and Abdulrahaman Okino Otuoze. "Implementation of a Data Transmission System Using Li-Fi Technology." 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf), 2019.
4. G. Madhuri, K. Anjali, and R. Sakthi Prabha. "Transmission of Data, Audio and Text Signal Using Li-Fi Technology." IOP Conference Series: Materials Science and Engineering, 2020.
5. J. N. Begam, N. Askarali, Aravindhraj Natarajan, and R. Deepa. "Arduino Based Visible Light Communications Between Two Devices Using Li-Fi Technology." 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAEC), 2021.
6. Mohit Vasuja, A. Mishra, Udbhav Singh Chauhan, Deeksha Chandola, and S. Kapoor. "Image Transmission Using Li-Fi." International Conference Inventive Communication and Computational Technologies, 2018.
7. Noof Al Abdulsalam, Raya Al Hajri, Zahra Al Abri, Zainab Al Lawati, and M. Bait-Suwailam. "Design and Implementation of a Vehicle to Vehicle Communication System Using Li-Fi Technology." 2015 International Conference on Information and Communication Technology Research (ICTRC), 2015.
8. Omkar V. Zad, Pragalbha S. Rawool, Dr. Pramod Bhavarthe, Viral R. Makwana, and Tejas H. Sawant. "Image and Text Transmission Using Li-Fi Technology." International Journal of Advanced Research in Science, Communication and Technology, 2023.
9. R. George, S. Vaidyanathan, Amandeep Singh Rajput, and K. Deepa. "LiFi for Vehicle to Vehicle Communication – A Review." Procedia Computer Science, 2019.
10. [10] R. Ramakrishnan, and Nanda kumar. "Image and Text Transmission Using Li-Fi Technology." International Journal of Advanced Research in Science, Communication and Technology, 2023.