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Abstract:

Beta regression is widely used for modeling continuous outcomes constrained to the unit interval (0,1).
Classical beta regression often assumes linear relationships between predictors and the mean or
precision parameter, potentially limiting flexibility for complex data patterns. We propose a spline-
enhanced beta regression framework that models both the mean and precision parameters using
natural cubic splines. We benchmark this method against Transformed Gaussian regression, Quantile
regression, using three diverse test functions: Trigonometric, Polynomial, and Exponential-Log.
Extensive simulations over multiple sample sizes demonstrate that the spline-based beta regression
consistently improves predictive accuracy while maintaining model interpretability. Our results suggest
that spline-based extensions provide a robust and flexible alternative for bounded response modeling.

Keywords: Beta regression, Spline modeling, Bounded outcomes, Predictive accuracy, Natural cubic
splines.
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Introduction:

Many scientific disciplines require the modeling of proportions, rates, or percentages bounded between
0 and 1. Examples include success rates in clinical trials, relative abundances in ecology, and
normalized performance metrics in engineering. Traditional linear regression is unsuitable for such
outcomes due to the bounded nature of the response variable, which violates assumptions of normality
and homoscedasticity. Beta regression, introduced by Ferrari and Cribari-Neto (2004), provides a
principled alternative by modeling outcomes (Y € (0,1)) using the beta distribution, parameterized by a
mean (u)and a precision (@). Despite its widespread adoption, standard beta regression typically
assumes linear or log-linear relationships between covariates and both parameters. This structural
limitation may fail to capture nonlinear dependencies often present in complex, real-world datasets,
thereby restricting model flexibility and predictive accuracy. In response, this study proposes a spline-
enhanced beta regression framework that extends the classical approach by allowing flexible, nonlinear
modeling of both the mean and precision parameters using natural cubic splines. Our method preserves
the interpretability of regression models while accommodating intricate functional forms without prior
specification. The remainder of this paper is organized as follows. Section 2 reviews related work on
beta regression and flexible modeling approaches. Section3 details the proposed methodology,
including classical beta regression, spline-based extensions, and competing methods. Section 4
describes the simulation design used to evaluate performance. Section 5 presents numerical and visual
results, and Section 6 discusses their implications. Finally, Section 7 concludes with a summary and
directions for future research.

Related Work:

Beta regression has been extensively studied for bounded data (Ferrari & Cribari-Neto, 2004).
Extensions include modeling precision as a function of covariates (Smithson & Verkuilen, 2006) and
Bayesian formulations (Ma et al., 2019). Spline-based regression techniques, particularly natural cubic
splines, have been shown to capture non-linear patterns in generalized linear models (Wood, 2017).
Recent studies have explored neural network extensions for bounded outputs (Wang et al., 2020), but
such methods often lack interpretability.

Methodology:
Classical Beta Regression:
The beta distribution for (Ye (0,1)) is:
r¢)

[f O O T (1-09)

where (4 € (0,1)) is the mean, (¢ > 0) is the precision. In classical beta regression:
lg (u)=XB, h (8)=Zy]

yH 1 (1-y) 081

with link functions (g) and (h).
Spline-Based Beta Regression:
We propose replacing linear predictors with natural cubic splines:
[ (L)=f, i)+, (X)), h(9,)=fy (Xi)+fy (xi2)]
where (f,) and (fy) are spline functions.
Proposed Method: Spline-Based Beta Regression — Step-by-Step
Step 1: Model the Response Distribution
Assume the response variable (Y € (0,1)) follows a beta distribution parameterized by mean (u)and
precision (0):
[Y~Beta(uo, (1 — 1))9|
where:
-(u €(0,1)) is the mean parameter.
- (@ >0) is the precision parameter.
Step 2: Replace Linear Predictors with Splines
In classical beta regression, linear predictors are used for both mean and precision:
[g(u) = X{B, h(¢) = Ziy]
In the proposed method, these are replaced with natural cubic splines:
g(:uz) = fu(xil) + fu(xi2)+- -
h(g) = fp(xi1) + fo (xi2)+- -
where:
- ( f,) and ( f,) are smooth spline functions,
- ( xi1, Xi2, -..) @re covariates,
- g(.) and h(.) are appropriate link functions (e.g., logit for ( y;), log for ( ¢).
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Step 3: Implement Using Natural Cubic Splines

- Use natural cubic spline bases (e.g., via the 'ns()” function in R) to represent ( f,) and ( fy).

- The splines allow flexible, nonlinear relationships between covariates and both the mean and precision
parameters.

Step 4: Model Fitting and Estimation

- Estimate the spline coefficients using maximum likelihood estimation (MLE) or Bayesian methods.

- The likelihood function is based on the beta density:

: :$ 0-1(1-y) (1-9¢-1
flpo) F(u¢)r((1-u)¢)yp -+

- Optimization can be performed using standard statistical software (e.g., “betareg™ with spline terms in
R).

Competing Methods:

Transformed Gaussian Regression Models:

A traditional econometric approach for fractional data, as discussed by Papke and Wooldridge
(1996), involves applying a transformation h(.) (e.g., logit, probit) to map the bounded response to the
real line and then employing a linear Gaussian model:

h(y)=X/B+&,  €~N(0, 0?)

Papke and Wooldridge critically highlighted the fundamental flaws of this approach. First, the model
is linear on the transformed scale, not the original scale of the data. Back-transforming the predictions
yields an estimate of the conditional median of y, not the conditional mean, due to the nonlinear
transformation. Recovering the mean requires retransformation that depends on the often-unknowable
distribution of the errors, leading to biased estimates. Second, this method implicitly assumes constant
variance on the transformed scale, which rarely holds, leading to inefficient estimates and invalid
inference.

Quantile Regression Models for Bounded Data:

Quantile regression, as applied to bounded data in works like Taylor (2019), offers a non-parametric

alternative that models the conditional quantiles of the response. For a quantile T the model is:

[, (1X)=X/B()]
where Qyi (11X;) is the 1 conditional quantile. This approach is highly robust and makes no distributional

assumptions about the response. Its primary strength lies in characterizing the entire conditional
distribution, which is particularly valuable for understanding tail behavior in bounded data. However, a
key limitation is that quantile regression does not provide a full probabilistic model; it models quantiles
individually, which can lead to "crossing" quantiles if not constrained. Furthermore, for a full
distributional characterization, multiple quantiles must be estimated, which can be computationally
intensive.

Simulation Design:

To evaluate how different modelling approaches perform when estimating mean functions for Beta-
distributed outcomes, we designed a simulation study using three distinct data-generating mechanisms.
Each mechanism specifies a nonlinear mean surface, (u(X4,X5), and a corresponding precision surface,
(B(x1,%2).

1. Trigonometric: (u=logit ™ (sin (2mxy)+cos (2mx,)), $,=10+5sin (mx;1x,) )
2. Polynomial: (p=logit " (2x1-2X,+4x4 X,-2X3+1.5x3), b,=8+3x,-2x,+6x1X; )
3. Exponential-Log: (u=logit " (exp(0.5x)+log(1+2x,)-1), b, =12+4e?*1+3log (1+3xy))

were selected to represent qualitatively different forms of nonlinearity: oscillatory behaviour,
polynomial curvature, and exponential-logarithmic structure. These choices allow us to test whether
the regression methods can adapt to a wide range of underlying patterns. For each mechanism, we
generated samples of size ( n) {250, 500, 750}. Covariates ( x; ) and ( X, ) were drawn independently
from a uniform distribution on ([0,1]). We then computed the true mean p(x, X )and precision ¢ (x4,
X,) values and simulated responses ( Y~Beta(u¢, (1-p)@) ). The function simulate data in the R code
carries out this process and returns a dataset containing the observed outcomes, covariates, and the
corresponding true generative values. To assess predictive accuracy, each dataset was analyzed using
four different modelling strategies under 5-fold cross-validation:

1. Beta Regression with Splines, allowing flexible nonlinear effects in both mean and precision;
2. Transformed Gaussian Regression, fitting a linear model to the logit-transformed response;
3. Median Quantile Regression at (1 = 0.5);

4. Classical Beta Regression with linear predictors.
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Within each fold, the models were trained on 80% of the data and evaluated on the remaining 20%.
For each method, we extracted predictions of the conditional mean and compared them with the true
generative values. Performance was summarized using Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE). After 500 runs were completed, the results were aggregated to obtain mean
and standard deviation values for RMSE and MAE.

Results:
Discussion of Numerical Results:

Table 1. illustrate Mean Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) obtained
from 500 run for each combination of test function, sample size, and modelling approach. Results are
reported for the Beta-Spline regression, Classical Beta regression, Quantile Regression (1=0.5), and
Transformed Gaussian models. Lower values indicate better predictive performance.

Comparison Across Effects of Sample Size:

Across all generating mechanisms and modelling strategies, increasing the sample size from
(n=250), (n=500), and (n=750) consistently reduces both RMSE and MAE. This behaviour is expected,
as larger samples provide more information about the underlying mean surface, allowing the fitted
models to better approximate the true data-generating process. The improvement is most pronounced
for models with flexible components,such as the Beta-Spline model, which benefit substantially from
additional data to stabilize spline-based estimates. More rigid models (e.g., classical beta regression)
show smaller improvements, reflecting their limited ability to adapt to complex nonlinear structures even
when sample size increases.

Comparison Across Test Functions:
1. Exponential-Log Mechanism:

All models perform well under this generating mechanism, with RMSE values generally between
0.011 and 0.024 across sample sizes. The data-generating mean surface is smooth and moderately
nonlinear, making it easier for all methods to approximate. At every sample size, the Classical Beta
Regression yields the best performance with the lowest RMSE and MAE. For example, at (n=750), it
attains an RMSE of 0.0117 and an MAE of 0.0091, slightly outperforming the Beta-Spline model.

2. Polynomial Mechanism:

Errors are substantially larger in this setting, with RMSE values between approximately 0.072 and
0.083. This reflects the high curvature of the polynomial mean surface. Here, the Beta-Spline and
Quantile Regression models consistently outperform the Classical Beta Regression and the
Transformed Gaussian model. For example, at (n=750), the best RMSE (0.0723) is achieved by the
Beta-Spline model, closely followed by Quantile Regression (0.0727). The Classical Beta Regression
performs worst, with RMSE values exceeding 0.081 across all sample sizes.

3. Trigonometric Mechanism;:

This is the most challenging scenario due to its oscillatory structure. The Beta-Spline model is the
only method capable of adequately capturing this nonlinearity. Its RMSE values range from 0.0415 (at
(n=250)) down to 0.0359 (at (n=750)), far outperforming all other methods. The Classical Beta
Regression performs extremely poorly, with RMSE values consistently around 0.178, indicating its
inability to adapt to highly periodic structures. Quantile Regression and the Transformed Gaussian
approach perform moderately, but remain far inferior to the spline-based method.

5.1.3 Best-Performing Models (RMSE and MAE)

» Exponential-Log Function:
Best Model: Classical Beta Regression Best Performance: RMSE = 0.0117, MAE = 0.0091 (at
(n=750)) The linear structure embedded in the generating process aligns well with the assumptions
of classical beta regression.

» Polynomial Function:
Best Model: Beta-Spline Regression (closely followed by Quantile Regression)
Best Performance: RMSE = 0.0723, MAE = 0.0552 (at (n=750)) Its nonlinear spline basis allows
more flexibility to approximate the curved surface.

» Trigonometric Function:
Best Model: Beta-Spline Regression Best Performance: RMSE = 0.0359, MAE = 0.0294 (at
(n=750)) Splines provide the necessary adaptability to capture periodic structure, whereas other
models systematically fail.
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Table (1): Summary of Predictive Accuracy Across Simulation Scenarios

Function S.S Model RMSE_mean | MAE mean
Exp-Log 250 | Beta-Spline 0.0202 0.0160
Exp-Log 250 | Classical-Beta 0.0154 0.0122
Exp-Log 250 | Quantile_0.5 0.0234 0.0189
Exp-Log 250 | Trans-Gaussian | 0.0221 0.0185
Exp-Log 500 | Beta-Spline 0.0141 0.0112
Exp-Log 500 | Classical-Beta | 0.0128 0.0100
Exp-Log 500 | Quantile_0.5 0.0183 0.0149
Exp-Log 500 | Trans-Gaussian | 0.0188 0.0162
Ex-Log 750 | Beta-Spline 0.0113 0.0090
Exp-Log 750 | Classical-Beta 0.0117 0.0091
Exp-Log 750 | Quantile_0.5 0.0162 0.0132
Exp-Log 750 | Trans-Gaussian | 0.0174 0.0152
Polynomial 250 | Beta-Spline 0.0762 0.0582
Polynomial 250 | Classical-Beta 0.0830 0.0653
Polynomial 250 | Quantile_0.5 0.0768 0.0572
Polynomial 250 | Trans-Gaussian | 0.0787 0.0590
Polynomial 500 | Beta-Spline 0.0733 0.0561
Polynomial 500 | Classical-Beta 0.0821 0.0648
Polynomial 500 | Quantile_0.5 0.0735 0.0547
Polynomial 500 | Trans-Gaussian | 0.0765 0.0573
Polynomial 750 | Beta-Spline 0.0723 0.0552
Polynomial 750 | Classical-Beta 0.0818 0.0645
Polynomial 750 | Quantile_0.5 0.0727 0.0540
Polynomial 750 | Trans-Gaussian | 0.0761 0.0568
Trigonometric | 250 | Beta-Spline 0.0415 0.0329
Trigonometric | 250 | Classical-Beta 0.1785 0.1519
Trigonometric | 250 | Quantile_0.5 0.1109 0.0914
Trigonometric | 250 | Trans-Gaussian | 0.1070 0.0870
Trigonometric | 500 | Beta-Spline 0.0370 0.0299
Trigonometric | 500 | Classical-Beta 0.1776 0.1514
Trigonometric | 500 | Quantile_0.5 0.1076 0.0895
Trigonometric | 500 | Trans-Gaussian | 0.1047 0.0858
Trigonometric | 750 | Beta-Spline 0.0359 0.0294
Trigonometric | 750 | Classical-Beta 0.1776 0.1515
Trigonometric | 750 | Quantile_0.5 0.1069 0.0891
Trigonometric | 750 | Trans-Gaussian | 0.1043 0.0855

Overall Trends:

1. Spline-based Beta Regression is the most robust across all nonlinear settings, performing best
in the Polynomial and Trigonometric scenarios and performing nearly as well as the top method in the
Exponential-Log case.

2. Classical Beta Regression excels only when the true mean is close to a linear predictor
transformation, as in the Exponential-Log mechanism. It deteriorates sharply when presented with
strong nonlinearity.

3. Sample size benefits all models but does not change relative rankings, indicating that model
flexibility, rather than sample size, is the primary determinant of performance.

Visual Comparison of Model Performance:

To complement the numerical results presented in Table 1., Figures 1-3 illustrate the distribution of
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) obtained from 500 Monte Carlo
replications for each combination of test function, sample size, and modeling approach. The boxplots
provide a visual summary of predictive accuracy, variability, and robustness across the four competing
methods.
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Figure (1): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile
Regression, Transformed Gaussian.
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Figure (2): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile
Regression, Transformed Gaussian

RMSE Distribution - Exponential-Lag MAE Distribution - Exponential-Log

= 500 = 0

RMSE

s Mnd;r
Figure (3): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile
Regression, Transformed Gaussian

Overall Patterns:

Spline-based beta regression exhibits the narrowest interquartile ranges (IQRs) and lowest median
errors in nearly all settings, especially for the Trigonometric and Polynomial data-generating
mechanisms. This indicates that the method not only achieves high point-wise accuracy but also
delivers stable predictions across repeated samples.

Classical beta regression performs well under the Exponential-Log scenario where the mean
structure is approximately linear on the logit scale but shows markedly wider and higher boxplots for
the Trigonometric and Polynomial functions. Its inability to adapt to nonlinear shapes is visually evident
in the elevated and dispersed error distributions.

Quantile regression and transformed Gaussian regression occupy an intermediate position. Their
boxplots are generally broader than those of the spline-based approach, reflecting greater
simulation-to-simulation variability. In the Trigonometric setting, both methods show substantial overlap
in error distributions, yet neither approaches the low median error of the spline-based model.

Effect of Sample Size:

Increasing the sample size from n=250, n=500, and n=750 systematically reduces the spread of the
boxplots for all models, as expected. However, the relative ordering of the methods remains
unchanged: the spline-based beta regression continues to outperform the alternatives at every sample
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size. This reinforces the conclusion that model flexibility, rather than sheer data quantity, is the primary

determinant of performance when the underlying mean and precision surfaces are nonlinear.

Robustness to Different Functional Forms:

The figures highlight how each method responds to qualitatively different types of nonlinearity:
Trigonometric function: Only the spline-based beta regression maintains a tight, low-lying error
distribution; the other models produce widely dispersed, high-median boxplots.

Polynomial function: The spline-based and quantile-regression boxplots are closely aligned and
distinctly lower than those of the classical beta and transformed Gaussian models.

Exponential-Log function: All models yield compact boxplots, with classical beta regression slightly
edging out the spline-based version in median error a result consistent with the near-linear nature of
the generating process.

Discussion:

Our simulation study reveals clear trade-offs among competing methods for modeling bounded
continuous outcomes. The proposed spline-based beta regression consistently outperformed traditional
approaches when the data exhibited strong nonlinearity, effectively capturing complex patterns in both
the mean and precision without sacrificing interpretability. This balance between flexibility and clarity is
a key strength splines allow the model to “bend” where needed while still providing a structured,
understandable form. In contrast, the transformed Gaussian model while intuitive and widely used
struggles with two fundamental issues. First, it models the data on a transformed scale, making back-
transformation to the original mean nontrivial and often biased. Second, it cannot accommodate varying
precision across observations, a common reality in bounded data. These limitations make it less reliable
in practice, despite its computational simplicity. Quantile regression offers robustness and avoids
distributional assumptions, making it appealing for median estimation and outlier-resistant inference.
Yet, it falls short when the goal is full probabilistic modeling or mean prediction, since estimating multiple
guantiles separately can be inefficient and may even lead to logically inconsistent results (e.g., quantile
crossing). For researchers interested in the full conditional distribution not just specific quantiles a
likelihood-based approach remains preferable. As expected, larger sample sizes helped all models,
reducing variability and sharpening estimates. Even with more data, a poorly specified model (like the
classical linear beta regression) still struggled with trigonometric patterns, while the spline model
adapted gracefully.

Conclusion

The proposed framework thus bridges an important gap in the methodological toolkit for bounded
response modeling. It offers a flexible alternative to traditional linear models and provides greater
interpretability compared to other approaches. Future research could explore the incorporation of
regularization techniques, interaction effects, or spatially and temporally correlated structures within this
spline-based framework. In summary, the spline-enhanced beta regression model represents a robust,
adaptable, and interpretable choice for researchers and practitioners working with bounded data,
supporting both accurate inference and clear communication of results in applied settings.
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