
 

Afro-Asian Journal of Scientific Research (AAJSR) 

 العلميالمجلة الأفروآسيوية للبحث 
E-ISSN: 2959-6505 

Volume 4, Issue 1, 2026 
Page No: 82-88 

Website: https://aajsr.com/index.php/aajsr/index  
SJIFactor 2024: 5.028 ISI 2025: 0.915 ( معامل التأثير العربيAIF )2025 :0.76 

 

82 | Afro-Asian Journal of Scientific Research (AAJSR)  

Enhancing Beta Regression for Bounded Response 
Modeling Using Spline-Based Mean and Precision 

Functions 
 

Abobaker M. Jaber1*, Mariam.A. Orafi2, Ahmed M. Mami3, Naeima N. Abd Elati, Salma Saad5 
1,2,4,5Statistics Department, University of Benghazi, Benghazi, Libya 

        3Mathematics Department, University of Omar Al-Mukhtar, Al Bayda, Libya 

 

للمتغيرات المحدودة القيمة باستخدام دوال انسيابية للمتوسط  تحسين نماذج انحدار بيتا

  والدقة
 

  5, سالمة سعد4يعبد العاط, نعيمة نصر 3أحمد محمد مامي ,2مريم عبدالله العرفي ,*1أبوبكر محمد جابر
 ليبيا قسم الاحصاء, كلية العلوم, جامعة بنغازي, بنغازي,2,4,51,

   ليبيا البيضاء, كلية العلوم, جامعة عمر المختار, قسم الرياضيات,3                  

 
*Corresponding author: jaber@uob.edu.ly 

 
Received: Decamber 07, 2025 Accepted: January 19, 2026 Published: January 28, 2026 

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

Abstract:  

Beta regression is widely used for modeling continuous outcomes constrained to the unit interval (0,1). 
Classical beta regression often assumes linear relationships between predictors and the mean or 
precision parameter, potentially limiting flexibility for complex data patterns. We propose a spline-
enhanced beta regression framework that models both the mean and precision parameters using 
natural cubic splines. We benchmark this method against Transformed Gaussian regression, Quantile 
regression, using three diverse test functions: Trigonometric, Polynomial, and Exponential-Log. 
Extensive simulations over multiple sample sizes demonstrate that the spline-based beta regression 
consistently improves predictive accuracy while maintaining model interpretability. Our results suggest 
that spline-based extensions provide a robust and flexible alternative for bounded response modeling. 
 
Keywords: Beta regression, Spline modeling, Bounded outcomes, Predictive accuracy, Natural cubic 
splines. 

 :الملخص
 .(0,1)ضمن المجال  لنمذجة المتغيرات المستمرة المحدودة )المحصورة(يعُدّ انحدار بيتا أحد الأساليب الإحصائية الشائعة 

إلا أنّ النماذج التقليدية غالباً ما تفترض وجود علاقات خطية بين المتغيرات التفسيرية وكلٍّّ من متوسط التوزيع أو معامل 
مل, نقترح نموذجاً مطوّراً لانحدار بيتا يعتمد وفي هذا الع .الدقة, وهو ما قد يقيّد قدرتها على تمثيل الأنماط البيانية المعقدة

وقد قمنا بمقارنة  .لنمذجة كلٍّّ من متوسط الاستجابة ومعامل الدقة في آن واحد انسيابية تكعيبية للمتوسط والدقة على دوال
لأداء النموذج المقترح مع كل من  دالة  :اختبار متنوعة, مستخدمين ثلاث دوال والانحدار الكمي الانحدار الغاوسي المحوَّ

وتظُهر نتائج المحاكاة الواسعة عبر أحجام عينات متعددة أن نموذج  ة.لوغاريتمي-مثلثية, ودالة متعددة الحدود, ودالة أسّية
ز بالسبلاين يوفر تحسناً ملحوظاً في دقة التنبؤ, مع المحافظة على قابلية تفسير النموذج وتشير النتائج . انحدار بيتا المعزَّ

 .أنّ نماذج الانحدار المعتمدة على السبلاين تمثلّ بديلاً مرناً وقوياً لنمذجة المتغيرات المحصورة ضمن مجال محدود إلى
 

 .انحدار بيتا, النمذجة الإحصائية, المتغيرات المحدودة, الدوال الانسيابية, معامل الدقة الكلمات المفتاحية:

https://aajsr.com/index.php/aajsr/index
mailto:jaber@uob.edu.ly
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Introduction: 
Many scientific disciplines require the modeling of proportions, rates, or percentages bounded between 
0 and 1. Examples include success rates in clinical trials, relative abundances in ecology, and 
normalized performance metrics in engineering. Traditional linear regression is unsuitable for such 
outcomes due to the bounded nature of the response variable, which violates assumptions of normality 
and homoscedasticity. Beta regression, introduced by Ferrari and Cribari-Neto (2004), provides a 

principled alternative by modeling outcomes (𝑌 ∈ (0,1)) using the beta distribution, parameterized by a 

mean (𝜇)and a precision (∅). Despite its widespread adoption, standard beta regression typically 
assumes linear or log-linear relationships between covariates and both parameters. This structural 
limitation may fail to capture nonlinear dependencies often present in complex, real-world datasets, 
thereby restricting model flexibility and predictive accuracy. In response, this study proposes a spline-
enhanced beta regression framework that extends the classical approach by allowing flexible, nonlinear 
modeling of both the mean and precision parameters using natural cubic splines. Our method preserves 
the interpretability of regression models while accommodating intricate functional forms without prior 
specification. The remainder of this paper is organized as follows. Section 2 reviews related work on 
beta regression and flexible modeling approaches. Section 3 details the proposed methodology, 
including classical beta regression, spline-based extensions, and competing methods. Section 4 
describes the simulation design used to evaluate performance. Section 5 presents numerical and visual 
results, and Section 6 discusses their implications. Finally, Section 7 concludes with a summary and 
directions for future research. 
Related Work: 
     Beta regression has been extensively studied for bounded data (Ferrari & Cribari-Neto, 2004). 
Extensions include modeling precision as a function of covariates (Smithson & Verkuilen, 2006) and 
Bayesian formulations (Ma et al., 2019). Spline-based regression techniques, particularly natural cubic 
splines, have been shown to capture non-linear patterns in generalized linear models (Wood, 2017). 
Recent studies have explored neural network extensions for bounded outputs (Wang et al., 2020), but 
such methods often lack interpretability. 
Methodology: 
Classical Beta Regression: 
The beta distribution for (Y∈ (0,1)) is: 

[f (y; μ,∅)=
Γ(ϕ)

Γ(μϕ)Γ((1-μ)ϕ)
y μ ϕ-1(1-y)(1-y)ϕ-1] 

where (μ  ∈ (0,1)) is the mean, (ϕ > 0) is the precision. In classical beta regression: 

[g (μ
i
)=Xi

 ⊺
β,  h (∅i)=Ζ i

⊺
γ] 

with link functions (g) and (h). 
Spline-Based Beta Regression: 
We propose replacing linear predictors with natural cubic splines: 

[g (μ
i
)=fμ (xi1)+fμ (xi2),        h(ϕ

i
)=fϕ(xi1)+fϕ(xi2)] 

where (fμ) and (fϕ) are spline functions.  

Proposed Method: Spline-Based Beta Regression – Step-by-Step 
Step 1: Model the Response Distribution 

Assume the response variable (𝑌 ∈ (0,1)) follows a beta distribution parameterized by mean (𝜇)and 

precision (∅): 

[𝑌~𝐵𝑒𝑡𝑎(𝜇∅, (1 − 𝜇))∅] 

where: 

- ( 𝜇 ∈ (0,1) ) is the mean parameter. 

- ( ∅ > 0 ) is the precision parameter. 
Step 2: Replace Linear Predictors with Splines 
In classical beta regression, linear predictors are used for both mean and precision: 

[𝑔(𝜇𝑖) = 𝑋𝑖
⊺𝛽,    ℎ(𝜙𝑖) = 𝛧𝑖

⊺𝛾] 
In the proposed method, these are replaced with natural cubic splines: 

𝑔(𝜇𝑖) = 𝑓𝜇(𝑥𝑖1) + 𝑓𝜇(𝑥𝑖2)+. .. 

ℎ(𝜙) = 𝑓𝜙(𝑥𝑖1) + 𝑓𝜙(𝑥𝑖2)+. .. 

where: 
- ( 𝑓𝜇) and ( 𝑓𝜙) are smooth spline functions, 

- ( 𝑥𝑖1, 𝑥𝑖2, …) are covariates, 

- 𝑔(. ) and ℎ(. ) are appropriate link functions (e.g., logit for ( 𝜇𝑖), log for ( 𝜙). 
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Step 3: Implement Using Natural Cubic Splines 
- Use natural cubic spline bases (e.g., via the `ns()` function in R) to represent ( 𝑓𝜇) and ( 𝑓𝜙). 

- The splines allow flexible, nonlinear relationships between covariates and both the mean and precision 
parameters. 
Step 4: Model Fitting and Estimation 
- Estimate the spline coefficients using maximum likelihood estimation (MLE) or Bayesian methods. 
- The likelihood function is based on the beta density: 

[f  (y ; μ,∅)=
Γ(ϕ)

Γ(μϕ)Γ((1-μ)ϕ)
y  μ ϕ-1(1-y) (1-y)ϕ-1] 

- Optimization can be performed using standard statistical software (e.g., `betareg` with spline terms in 
R). 
Competing Methods: 
Transformed Gaussian Regression Models: 
     A traditional econometric approach for fractional data, as discussed by Papke and Wooldridge 
(1996), involves applying a transformation ℎ(.) (e.g., logit, probit) to map the bounded response to the 
real line and then employing a linear Gaussian model: 

h(y
i
)=Xi

T
β+ϵi,       ϵ~N(0, σ2) 

     Papke and Wooldridge critically highlighted the fundamental flaws of this approach. First, the model 
is linear on the transformed scale, not the original scale of the data. Back-transforming the predictions 
yields an estimate of the conditional median of y, not the conditional mean, due to the nonlinear 
transformation. Recovering the mean requires retransformation that depends on the often-unknowable 
distribution of the errors, leading to biased estimates. Second, this method implicitly assumes constant 
variance on the transformed scale, which rarely holds, leading to inefficient estimates and invalid 
inference. 
Quantile Regression Models for Bounded Data: 
     Quantile regression, as applied to bounded data in works like Taylor (2019), offers a non-parametric 
alternative that models the conditional quantiles of the response. For a quantile τ the model is: 

[Qyi
(τ|Xi)=Xi

T
β(τ)] 

where Qyi
(τ|Xi) is the τ conditional quantile. This approach is highly robust and makes no distributional 

assumptions about the response. Its primary strength lies in characterizing the entire conditional 
distribution, which is particularly valuable for understanding tail behavior in bounded data. However, a 
key limitation is that quantile regression does not provide a full probabilistic model; it models quantiles 
individually, which can lead to "crossing" quantiles if not constrained. Furthermore, for a full 
distributional characterization, multiple quantiles must be estimated, which can be computationally 
intensive. 
Simulation Design: 
     To evaluate how different modelling approaches perform when estimating mean functions for Beta-
distributed outcomes, we designed a simulation study using three distinct data-generating mechanisms. 
Each mechanism specifies a nonlinear mean surface, (μ(x1,x2), and a corresponding precision surface, 

(∅(x1,x2).  

1. Trigonometric:  (μ=logit
 -1(sin (2πx1)+cos (2πx2)),  ϕ

i
=10+5sin (πx1x2)  ) 

2. Polynomial: (μ=logit
 -1(2x1-2x2+4x1x2-2x1

2+1.5x2
2),  ϕ

i
=8+3x1-2x2+6x1x2  )    

3. Exponential-Log: (μ=logit
 -1(exp(0.5x1)+log(1+2x2)-1), ϕ

i
=12+4e-2x1+3log (1+3x2)) 

     were selected to represent qualitatively different forms of nonlinearity: oscillatory behaviour, 
polynomial curvature, and exponential–logarithmic structure. These choices allow us to test whether 
the regression methods can adapt to a wide range of underlying patterns. For each mechanism, we 
generated samples of size ( n) {250, 500, 750}. Covariates ( x1 ) and ( x2 ) were drawn independently 

from a uniform distribution on ([0,1]). We then computed the true mean μ(x1, x2)and precision ϕ(x1, 

x2) values and simulated responses ( Y~Beta(μϕ, (1-μ)ϕ) ). The function simulate data in the R code 
carries out this process and returns a dataset containing the observed outcomes, covariates, and the 
corresponding true generative values. To assess predictive accuracy, each dataset was analyzed using 
four different modelling strategies under 5-fold cross-validation: 
1. Beta Regression with Splines, allowing flexible nonlinear effects in both mean and precision; 
2. Transformed Gaussian Regression, fitting a linear model to the logit-transformed response; 

3. Median Quantile Regression at (τ = 0.5); 
4. Classical Beta Regression with linear predictors. 
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     Within each fold, the models were trained on 80% of the data and evaluated on the remaining 20%. 
For each method, we extracted predictions of the conditional mean and compared them with the true 
generative values. Performance was summarized using Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE). After 500 runs were completed, the results were aggregated to obtain mean 
and standard deviation values for RMSE and MAE. 
Results: 
Discussion of Numerical Results: 
     Table 1. illustrate Mean Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) obtained 
from 500 run for each combination of test function, sample size, and modelling approach. Results are 
reported for the Beta-Spline regression, Classical Beta regression, Quantile Regression (τ=0.5), and 
Transformed Gaussian models. Lower values indicate better predictive performance.  
Comparison Across Effects of Sample Size: 
     Across all generating mechanisms and modelling strategies, increasing the sample size from 
(n=250), (n=500), and (n=750) consistently reduces both RMSE and MAE. This behaviour is expected, 
as larger samples provide more information about the underlying mean surface, allowing the fitted 
models to better approximate the true data-generating process. The improvement is most pronounced 
for models with flexible components,such as the Beta-Spline model, which benefit substantially from 
additional data to stabilize spline-based estimates. More rigid models (e.g., classical beta regression) 
show smaller improvements, reflecting their limited ability to adapt to complex nonlinear structures even 
when sample size increases. 
Comparison Across Test Functions: 
1. Exponential–Log Mechanism: 
     All models perform well under this generating mechanism, with RMSE values generally between 
0.011 and 0.024 across sample sizes. The data-generating mean surface is smooth and moderately 
nonlinear, making it easier for all methods to approximate. At every sample size, the Classical Beta 
Regression yields the best performance with the lowest RMSE and MAE. For example, at (n=750), it 
attains an RMSE of 0.0117 and an MAE of 0.0091, slightly outperforming the Beta-Spline model. 
2. Polynomial Mechanism: 
     Errors are substantially larger in this setting, with RMSE values between approximately 0.072 and 
0.083. This reflects the high curvature of the polynomial mean surface. Here, the Beta-Spline and 
Quantile Regression models consistently outperform the Classical Beta Regression and the 
Transformed Gaussian model. For example, at (n=750), the best RMSE (0.0723) is achieved by the 
Beta-Spline model, closely followed by Quantile Regression (0.0727). The Classical Beta Regression 
performs worst, with RMSE values exceeding 0.081 across all sample sizes. 
3. Trigonometric Mechanism: 
     This is the most challenging scenario due to its oscillatory structure. The Beta-Spline model is the 
only method capable of adequately capturing this nonlinearity. Its RMSE values range from 0.0415 (at 
(n=250)) down to 0.0359 (at (n=750)), far outperforming all other methods. The Classical Beta 
Regression performs extremely poorly, with RMSE values consistently around 0.178, indicating its 
inability to adapt to highly periodic structures. Quantile Regression and the Transformed Gaussian 
approach perform moderately, but remain far inferior to the spline-based method. 
5.1.3 Best-Performing Models (RMSE and MAE) 
 Exponential–Log Function: 

Best Model: Classical Beta Regression Best Performance: RMSE = 0.0117, MAE = 0.0091 (at 
(n=750)) The linear structure embedded in the generating process aligns well with the assumptions 
of classical beta regression. 

 Polynomial Function: 
Best Model: Beta-Spline Regression (closely followed by Quantile Regression) 
Best Performance: RMSE = 0.0723, MAE = 0.0552 (at (n=750)) Its nonlinear spline basis allows 
more flexibility to approximate the curved surface. 

 Trigonometric Function: 
Best Model: Beta-Spline Regression Best Performance: RMSE = 0.0359, MAE = 0.0294 (at 
(n=750)) Splines provide the necessary adaptability to capture periodic structure, whereas other 
models systematically fail. 
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Table (1): Summary of Predictive Accuracy Across Simulation Scenarios 

Function S.S Model RMSE_mean MAE_mean 

Exp-Log 250 Beta-Spline 0.0202 0.0160 

Exp-Log 250 Classical-Beta 0.0154 0.0122 

Exp-Log 250 Quantile_0.5 0.0234 0.0189 

Exp-Log 250 Trans-Gaussian 0.0221 0.0185 

Exp-Log 500 Beta-Spline 0.0141 0.0112 

Exp-Log 500 Classical-Beta 0.0128 0.0100 

Exp-Log 500 Quantile_0.5 0.0183 0.0149 

Exp-Log 500 Trans-Gaussian 0.0188 0.0162 

Ex-Log 750 Beta-Spline 0.0113 0.0090 

Exp-Log 750 Classical-Beta 0.0117 0.0091 

Exp-Log 750 Quantile_0.5 0.0162 0.0132 

Exp-Log 750 Trans-Gaussian 0.0174 0.0152 

Polynomial 250 Beta-Spline 0.0762 0.0582 

Polynomial 250 Classical-Beta 0.0830 0.0653 

Polynomial 250 Quantile_0.5 0.0768 0.0572 

Polynomial 250 Trans-Gaussian 0.0787 0.0590 

Polynomial 500 Beta-Spline 0.0733 0.0561 

Polynomial 500 Classical-Beta 0.0821 0.0648 

Polynomial 500 Quantile_0.5 0.0735 0.0547 

Polynomial 500 Trans-Gaussian 0.0765 0.0573 

Polynomial 750 Beta-Spline 0.0723 0.0552 

Polynomial 750 Classical-Beta 0.0818 0.0645 

Polynomial 750 Quantile_0.5 0.0727 0.0540 

Polynomial 750 Trans-Gaussian 0.0761 0.0568 

Trigonometric 250 Beta-Spline 0.0415 0.0329 

Trigonometric 250 Classical-Beta 0.1785 0.1519 

Trigonometric 250 Quantile_0.5 0.1109 0.0914 

Trigonometric 250 Trans-Gaussian 0.1070 0.0870 

Trigonometric 500 Beta-Spline 0.0370 0.0299 

Trigonometric 500 Classical-Beta 0.1776 0.1514 

Trigonometric 500 Quantile_0.5 0.1076 0.0895 

Trigonometric 500 Trans-Gaussian 0.1047 0.0858 

Trigonometric 750 Beta-Spline 0.0359 0.0294 

Trigonometric 750 Classical-Beta 0.1776 0.1515 

Trigonometric 750 Quantile_0.5 0.1069 0.0891 

Trigonometric 750 Trans-Gaussian 0.1043 0.0855 

 
Overall Trends: 
1. Spline-based Beta Regression is the most robust across all nonlinear settings, performing best 
in the Polynomial and Trigonometric scenarios and performing nearly as well as the top method in the 
Exponential–Log case. 
2. Classical Beta Regression excels only when the true mean is close to a linear predictor 
transformation, as in the Exponential–Log mechanism. It deteriorates sharply when presented with 
strong nonlinearity. 
3. Sample size benefits all models but does not change relative rankings, indicating that model 
flexibility, rather than sample size, is the primary determinant of performance. 
Visual Comparison of Model Performance: 
     To complement the numerical results presented in Table 1., Figures 1–3 illustrate the distribution of 
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) obtained from 500 Monte Carlo 
replications for each combination of test function, sample size, and modeling approach. The boxplots 
provide a visual summary of predictive accuracy, variability, and robustness across the four competing 
methods. 
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Figure (1): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function 
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile 

Regression, Transformed Gaussian. 
 

 

 

Figure (2): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function 
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile 

Regression, Transformed Gaussian 
 

  

Figure (3): Distribution of RMSE (left) and MAE (right) for the Trigonometric test function 
across sample sizes n=250,500,750. Models: Spline Beta, Classical Beta, Quantile 

Regression, Transformed Gaussian 
 
Overall Patterns: 
     Spline-based beta regression exhibits the narrowest interquartile ranges (IQRs) and lowest median 
errors in nearly all settings, especially for the Trigonometric and Polynomial data-generating 
mechanisms. This indicates that the method not only achieves high point-wise accuracy but also 
delivers stable predictions across repeated samples. 
     Classical beta regression performs well under the Exponential-Log scenario where the mean 
structure is approximately linear on the logit scale but shows markedly wider and higher boxplots for 
the Trigonometric and Polynomial functions. Its inability to adapt to nonlinear shapes is visually evident 
in the elevated and dispersed error distributions. 
     Quantile regression and transformed Gaussian regression occupy an intermediate position. Their 
boxplots are generally broader than those of the spline-based approach, reflecting greater 
simulation-to-simulation variability. In the Trigonometric setting, both methods show substantial overlap 
in error distributions, yet neither approaches the low median error of the spline-based model. 
Effect of Sample Size: 
     Increasing the sample size from n=250, n=500, and n=750 systematically reduces the spread of the 
boxplots for all models, as expected. However, the relative ordering of the methods remains 
unchanged: the spline-based beta regression continues to outperform the alternatives at every sample 
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size. This reinforces the conclusion that model flexibility, rather than sheer data quantity, is the primary 
determinant of performance when the underlying mean and precision surfaces are nonlinear. 
Robustness to Different Functional Forms: 
     The figures highlight how each method responds to qualitatively different types of nonlinearity: 
Trigonometric function: Only the spline-based beta regression maintains a tight, low-lying error 
distribution; the other models produce widely dispersed, high-median boxplots. 
     Polynomial function: The spline-based and quantile-regression boxplots are closely aligned and 
distinctly lower than those of the classical beta and transformed Gaussian models. 
     Exponential-Log function: All models yield compact boxplots, with classical beta regression slightly 
edging out the spline-based version in median error a result consistent with the near-linear nature of 
the generating process. 
Discussion: 
     Our simulation study reveals clear trade-offs among competing methods for modeling bounded 
continuous outcomes. The proposed spline-based beta regression consistently outperformed traditional 
approaches when the data exhibited strong nonlinearity, effectively capturing complex patterns in both 
the mean and precision without sacrificing interpretability. This balance between flexibility and clarity is 
a key strength splines allow the model to “bend” where needed while still providing a structured, 
understandable form. In contrast, the transformed Gaussian model while intuitive and widely used 
struggles with two fundamental issues. First, it models the data on a transformed scale, making back-
transformation to the original mean nontrivial and often biased. Second, it cannot accommodate varying 
precision across observations, a common reality in bounded data. These limitations make it less reliable 
in practice, despite its computational simplicity. Quantile regression offers robustness and avoids 
distributional assumptions, making it appealing for median estimation and outlier-resistant inference. 
Yet, it falls short when the goal is full probabilistic modeling or mean prediction, since estimating multiple 
quantiles separately can be inefficient and may even lead to logically inconsistent results (e.g., quantile 
crossing). For researchers interested in the full conditional distribution not just specific quantiles a 
likelihood-based approach remains preferable. As expected, larger sample sizes helped all models, 
reducing variability and sharpening estimates. Even with more data, a poorly specified model (like the 
classical linear beta regression) still struggled with trigonometric patterns, while the spline model 
adapted gracefully. 
Conclusion 
     The proposed framework thus bridges an important gap in the methodological toolkit for bounded 
response modeling. It offers a flexible alternative to traditional linear models and provides greater 
interpretability compared to other approaches. Future research could explore the incorporation of 
regularization techniques, interaction effects, or spatially and temporally correlated structures within this 
spline-based framework. In summary, the spline-enhanced beta regression model represents a robust, 
adaptable, and interpretable choice for researchers and practitioners working with bounded data, 
supporting both accurate inference and clear communication of results in applied settings. 
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