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Abstract:

This study analyzes the statistical properties of monthly domestic crude oil prices in Libya and Algeria
from January 1983 to June 2025, aiming to model and forecast price dynamics. For modeling purposes,
hybrid models combining the Autoregressive Integrated Moving Average (ARIMA) model and the
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model with normal, Student-t,
and GED error distributions are employed. Series stationarity is assessed using ADF tests, and model
selection uses AIC and SIC criteria, with diagnostic checks for residual including Ljung-Box tests, ARCH
effects, and normality assessments. Results indicate that the prices series are non-stationary, while the
log-differenced series are stationary. Among candidate ARIMA models, ARIMA(0,1,1) and
ARIMA(1,1,1) provide the best fit. Including conditional heteroskedasticity, ARIMA-GARCH(1,0) with
Student-t distribution produces stable residuals and significant parameters estimates. Out-of-sample
evaluation using RMSE and MAE identifies ARIMA(1,1,1)-GARCH(1,0)-t as the most accurate
forecasting model. These findings highlight the importance of heavy-tailed error distributions and
volatility clustering in modeling domestic oil price dynamics, and demonstrating that the ARIMA-GARCH
models provide reliable short-term forecasting efficiency, and contribute to supporting economic and
policymakers in the two countries under study.
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Introduction:

Crude oil is a significant energy resource, plays a pivotal role in shaping economic and political
condition at both the regional and international levels, with oil prices serving as a key indicator of
economic activity. Since the 1973 oil crisis, energy and oil prices have exhibited higher changes than
other commaodities [1], affecting investor decisions and risk management practices. Consequently,
governments and investors are paying increasing attention to analyzing oil price dynamics due to their
direct impact on economic policy formulation and investment decision-making [2-4]. In general, oil prices
modeling and forecasting have received increasing global attention, with studies focusing on
development techniques and quantitative methods, particularly time series models, to represent price
dynamics and volatility [5].

Time series models are classified as linear and nonlinear depending on the nature of the relation
between the current and past values of the variable, models considered linear if the relationship is linear
and non-linear otherwise [6]. In this context, the ARIMA models proposed by Box and Jenkins [7] are
one of the most common linear time series models and have been widely applied due to their ability in
modeling the dynamic behavior of conditional mean, especially in the case of non-stationary series after
differencing [8]. Although the ARIMA models provide good efficiency in short-term forecasting [9,10],
but their ability to handle complex features of financial data (e.g., oil price), such as nonlinearity,
heterogeneity of variance, high volatility (volatility clustering), and excessive kurtosis remains limited
[11]. Therefore, models that explicitly account for these characteristics provide more accurate
representations and better predictive performance [12]. In light of these limitations, the time series
analysis literature has proposed different categories of non-linear models, including the Autoregressive
Conditional Heteroscedasticity (ARCH) model introduced by Engel [13] and the Generalized ARCH
(GARCH) model introduced by Bollerslev [14], which allows for modeling conditional variance, or time-
varying volatility by incorporating the effects of past volatility into the equation for calculating current
volatility. Moreover, ARCH and GARCH models are affective and widely used in analyzing the
conditional variance (volatility) especially in the analysis of financial time series data [15]. Hence,
combining ARIMA for modeling the conditional mean with GARCH for modeling the conditional variance
provides a comprehensive structure for capturing linear and nonlinear behavior, making it particularly
suitable for modeling and forecasting of financial data.

Statement of the Problem:

Despite the significance of domestic oil prices, a literature review reveals a lack of studies modeling
these prices in developing oil-producing countries compared to developed countries. This study seeks
to address this gap through an updated empirical analysis of domestic oil prices in both Libya and
Algeria, taking into account the complex statistical features of these time series, such as heterogeneity
of variance, volatility clustering, and excessive kurtosis. To achieve that, the study combines the ARIMA
models and GARCH models assuming three error distributions for providing a more accurate modeling
and improving the predictive power.

The Study Objectives:

The main objective of this study is to analyze the statistical characteristics of domestic oil prices in

Libya and Algeria through the following specific objectives:

1. To model the conditional mean of the time series using appropriate ARIMA models.

2. To model the conditional variance of domestic oil prices using GARCH models with alternative error
distributions.

3. To evaluate and compare the out-of-sample forecasting accuracy of ARIMA-GARCH models based
on standard error measures.

Limitations:

This study is limited to the analysis and modeling of domestic oil prices in Libya and Algeria, two
developing oil-producing countries and important members of the Organization of the Petroleum
Exporting Countries (OPEC) [16]. The focus on these two countries reflects their comparable economic
structures and heavy dependence on oil revenues. Moreover, the analysis is conducted using monthly
oil prices data, consistent with previous empirical studies (e.qg., [11,17]).
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Literature Review:

This section reviews the most major methods used in the literature on oil price analysis. According
to Frey et al. [5], these methods can be categorized into three main approaches: time series analysis,
economic models, and artificial intelligence techniques. However, this review focuses on time series
analysis, paying particular attention to statistical models used to describe and forecast these series.
Several studies have investigated the modeling and forecasting of oil prices using time series models,
with significant variations in the nature of the data used, its time range, and the statistical models
employed. For instance:

Xie et al. [11] explored the forecasting of the monthly price of West Texas Intermediate (WTI) crude
oil during 1970-2003 using the ARIMA (1,1,0) model. The results showed that while the linear model is
capable of describing the linear structure of the series, it lacks the flexibility to capture nonlinear
behavior and complex price dynamics. Moreover, this finding highlights the limitation of ARIMA models
when dealing with financial data characterized by high volatility and instability in variance. In this
context, subsequent studies have focused on integrating conditional mean models with conditional
variance models. Mohammadi and Su [18], evaluated the effectiveness of the ARIMA-GARCH hybrid
model, including GARCH, APARCH, EGARCH, and FIGARCH models, for modeling weekly prices in
11 international markets during January 1997 until October 2009, assuming a skewed Student-t
distribution of errors. The results showed that the APARCH model outperformed the GARCH model in
most cases, highlighting the importance of modeling variance asymmetry and high kurtosis in financial
data. These results confirm that the characterization of conditional variance leads to better predictive
performance compared to linear models. In the study by Yazizet et al. [10], the ARIMA(1,2,1) and
GARCH(1,1) models were evaluated for forecasting the daily price of WTI over the period from 1986 to
2009 using out-of-sample. The results showed that the ARIMA model outperformed historical-prices-
based forecasts, while the GARCH model excelled in capturing conditional variance and characterizing
volatility in the data. In another comparative study, Ahmed and Shabri [19] applied three techniques to
forecast WTI crude oil prices during the period 1986-2006, including ARIMA and GARCH models and
a Supporting Vector Machine (SVM). The results based on the MAE and RMSE criteria, indicated that
the ARIMA model outperformed the GARCH model in terms of forecasting accuracy.

Within the framework of univariate models, Tularam and Saeed [20] compared ARIMA, Holt-Winters
and exponential smoothing models to predict monthly oil price between October 2015 and March 2016.
The results concluded that the ARIMA (2,1,2) model provided the best predictive performance
compared with the other models. On the other hand, Herrera et al. [21] focused on comparing a set of
GARCH models with different error distributions to forecast daily oil prices of WTI. The results confirmed
that the Student's t distribution was the most appropriate due to the high kurtosis of the data. The
EGARCH (1,1) model also showed better performance in medium-term forecasts, while the GARCH
(1,1) and RiskMetrics models performed well in short-term forecasting. In an application to local prices,
Shah and Thaker [22] examined the forecasting of monthly oil prices in India from April 2000 to October
2023 using the ARIMA-GARCH hybrid mode. The findings showed that the ARIMA (4,2,0)-GARCH
(0,3) model was the most suitable compared to other models.

Previous studies indicate the limitation of linear models with constant variance in representing the
statistical characteristics of oil prices, especially in high of volatility and nonlinear behavior. Despite the
prevalence of GARCH models and their derivatives, the selection of the optimal model remains depends
on data features, time frequency, error distributions, and forecast horizon, without a clear consensus in
the literature [12,23]. Therefore, the need for comparative applied studies on local data is evident which
is what the current study addresses from a statistical perspective.

Univariate Time Series Models:

This section presents the linear and non-linear time series models used in the study, with an
emphasis on the ARIMA and the GARCH models as standard models for modeling conditional mean
and conditional variance.

The Autoregressive Moving Average Model ARMA(p,q):

The ARMA(p,q) model is a hybrid model that combines the autoregressive AR(p) model and the
moving average MA(g) model, where it is widely used in time series analysis. It is expressed as follows:
Vi=@o+ @1Yeo1 @V o+ + ¥+ & — 01601 — Oz ... — qut—q , (1)

where Y,,Y;_,, ...Y;_, is the variable under study at time t, t-7,...... t-p, p and g are the orders of the
AR and the MA models, respectively, ¢, is a constant, while ¢, ....,¢, and 0, ....,6, are the model
coefficients and &, ...,&_,, are the error term with zero mean and positive variance o2 with no

correlations (with noise). Moreover, the ARMA(p,q) model assumes the property of stationarity, which
means that the mean and variance of the data never change over time [6,24,25].
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The Autoregressive Integrated Moving Average Model ARIMA(p,d,q):

The ARIMA(p,d,q) model introduced by Box and Jenkins [7], is an extension of the ARMA model by
incorporating differencing of order d to handle non-stationarity time series. The model is expressed as
follows:

(pp(B) e Ye =@ + eq(B)gt ’ (2)

where ¢,(B) and 6,(B) represent the AR(p) and MA(q) models polynomials, respectively, v =
(1 — B)%is the differencing operator, and ¢, represents a with noise error term.

The Generalized Autoregressive Conditional Heteroscedasticity model GARCH(p,q):

The GARCH(p,q) model proposed by Bollerslev [14] makes the current conditional variance (o%)
depend on the squares of the prior innovations of order p and the prior conditional variance of ordergq.
The formula for this model is given as follows:

W= U+ & , & =02 , z,~ iidN(0,1),
of = ag+ X @ el + Zj?zl o, 3)

where u, is a conditional mean of w, , a, is a constantand a, > 0 , pis the order of the ARCH term,
q is the order of the GARCH term, «; > 0, f; = 0 are model parameters and z, is a white noise.
Moreover, stationarity requires %.i_, a; + X7_, 8; <1.

Hybrid ARIMA-GARCH Model:

The hybrid ARIMA-GARCH model combines ARIMA for modeling the conditional mean with GARCH
for capturing conditional heteroskedasticity in the residuals. In this framework, ARIMA accounts for
linear dependence in the series, while GARCH deals with time-varying volatility when ARCH effects are
present.

The Error Distributions of GARCH Models:

The traditional ARCH/GARCH models assume that the error limit follows a normal distribution.
However, subsequent studies have proposed more suitable alternatives, such as the Student's t-
distribution, and the generalized error distribution (GED), to represent the features of thick tails in
financial series (see, e.g., [14, 26,27]).

Methodology:

Applying the hybrid ARIMA-GARCH models for study data consists of main four steps,: first,
identifying the optimal ARIMA model to eliminate any linear dependence in data; second, testing the
model residuals to detect potential ARCH effects, third, if ARCH effects are statistically significant, using
the GARCH model and estimating the coefficients of both models together, and finally evaluate the
forecasting accuracy of the models.

Model identification:

The first step in the Box-Jenkins methodology requires verifying the stationarity of the time series.
Stationarity can be checked using the plots of the autocorrelation function (ACF) and the partial
autocorrelation function, as well as unit root tests, such as the Augmented Dickey-Fuller (ADF) test [28].
If the stationarity of the series is not achieved, a suitable mathematical transformation or the difference
of order d is applied to stabilize the series.

The Augmented Dickey Fuller (ADF) Test:

The ADF test is used to verify the stationarity of the time series by testing for the presence of a unit
root. The null hypothesis (Ho: data has a unit root) is rejected if the p-value is less than the significance
level a, and the ADF statistic is calculated as follows:

_ al -1
ADF test = ! G 4)

where %1 is the estimator of the least squares of ¢, with the standard error is SE(@l). However, after

that for identifying the model, the patterns of ACF and PACF are use to determine the optimal orders
of AR(p) and MA(q). Table 1 shows the ACF and the PACF patterns of Box-Jenkins models.

Table (1): The Patterns of the ACF and the PACF.

Model AR(p) MA(Q) ARMA(p,q)
ACF Dies down Cut off after lag q Dies down
PACF | Cut off after lag p Dies down Dies down

Estimation of model parameters:

After determining the appropriate model, the model parameters are usually estimated using the
Maximum Likelihood Estimation (MLE) method, which is a very efficient and accurate method for
estimating parameters in time series models.

Selecting the Best Model:
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To select the best model from a set of candidates, information criteria such as the Akaike Information
Criterion (AIC) [29] and the Schwarz Information Criterion (SIC) [30] are used. These criteria are
calculated as follows:

AIC = =21In(L) + 2k , (5)
SIC = 21In(L) + k In(T) (6)

where L denotes the likelihood function of the model, k is the number of estimated parameters, and
T is the size of sample. The model that gives the lowest values of these criteria is preferred.
Diagnostic checking:

After estimating the model, its suitability is assessed by analyzing the model residuals. Common
diagnostic tests include:

Independence tests: the ACF plots and the Ljung-Box test [31] are used to check for autocorrelation
in the residuals. Moreover, the Ljung-Box test statistic is calculated as follows:

~2
Qm) = T(T +2) X, 2, (7)

where Q is the test statistic, T is the size of sample, m is the number of lags to be tested and p;, is
an autocorrelation coefficient at lag k. If the p-value is small (< a), the null hypothesis is rejected and
the residuals are found to be autocorrelated.
Normality distribution tests: the histogram and the Jarque-Bera (JB) test [32] are used to assess how
closely the residuals approximate a normal distribution. However, the JB test statistic is calculated as
follows:
T2+ R ®)

/7 /T

where T is the sample size and $?(y) is skewness and K (y) is kurtosis. If the p-value is small (< a),
the null hypothesis is rejected, indicating that the data are not normal.
Heteroscedasticity tests: the Ljung-Box test is used to detect significant autocorrelations for squares
of residual, while the ARCH-LM test [13] is used to check for ARCH effects. If these effects are
statistically significant (p-value < a), conditional variance models are used in the subsequent analysis.
Forecasting:

After verifying the suitability of the model, it used to predict future values of the series. The accuracy
of the prediction is evaluated using two common measures; the root mean square error (RMSE) and
the mean absolute error (MAE).

RMSE = "%Zfﬂ(f’t -y)?% and MAE = %Z?:llj’\t = Yel, 9

where y, represents the actual value, 9, represents the predictive value and T represents the size
of sample. Therefore, the model which achieves the lowest values for these two measures is preferred.
Data Description:

This study uses monthly domestic crude oil prices for Libya (LOP) and Algeria (AOP) from January
1983 to June 2025, obtained from OPEC’s Monthly Oil Market Reports [16]. The data are split into in-
sample observations for model estimation and selection, and out-of-sample observations covering the
final year (July 2024 to June 2025) for forecasting evaluation.

Results and discussion:

Figure 1 displays the time series of both LOP and AOP, and their correlogram from January 1983 to
June, 2025. Visual inspection indicates decreasing and increasing changes at different intervals in both
series, suggesting a general trend, with no evident seasonal patterns. The correlogram plots of the ACF
and the PACF indices up to lag 15 exhibit slow decay for both series, indicating non-stationary.
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Figure (1): Plots of LOP, AOP Series and their Correlogram from January 1983 to June 2025.
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Therefore, the first difference of the natural logarithm of the price series (dllop and dlaop) was
computed and these new series are known as returns in the financial literature and can be defined as
follows:

LOP = log ( ) = log(0P,) — log(OP;_,),
where LOP is a return series, OP; and OPt_1 the prices at time t and t — 1. As shown in Figure 2,
the differenced series fluctuated around a constant mean with stable variance, indicating stationarity.
Moreover, the ACFs decay rapidly after lag 1, while and the PACFs plots cutoff after lag 2, providing
further evidence that the return series are stationary.

Conshoyan of LOP Comelogram of DLACP

DLLOP

ME
Inchuded ions: 50

fimcomeaion  Pafal Comslaton ~ AC PAC O-Sat Prob

I 10 105 200 205 20 25 2020 20 -
T S R

Figure (2): Plots of dllop, dlaop Series and their Correlogram from January 1983 to June 2025.

Table 2 reports the descriptive statistics of monthly prices and returns across the full sample in both
countries, showing broadly similar patterns. The return series (dllop and dlaop) exhibit small positive
means and relatively low standard deviations. The prices in level are positively skewed, while returns
display negative skewness. Excess kurtosis is positive for both prices and returns, suggesting
leptokurtic distributions. Moreover, the JB test strongly rejects the null hypothesis of normality.

Table (2): Descriptive Statistics of the Study Data.

Descriptive Libya Algeria
Statistics LOP dllop AOP dlaop
Mean 47.405 0.002 48.521 0.002
Std. Dev. 32.138 0.104 32.478 0.099
Skewness 0.775 -0.795 0.752 -0.679
Kurtosis 2.406 12.956 2.359 11.098
Jarque-Bera 58.518" 2155.983" 56.766" 1429.989"
Probability 0.000 0.000 0.000 0.000
Observations 510 509 510 509

* Rejection at 1% significance level.
Unit root properties were examined using the ADF test for both prices and return series. The test
was performed under specifications including an intercept and trend, intercept only, and no deterministic
components, with results showed in Table 3.

Table (3): Results of Unit Root Tests.

Augmented Dickey-Fuller Libya Algeria
(ADF) Test LoP dilop AOP dlaop
None Test statistic -1.056 -15.866" -1.067 -15.873"
p-value 0.263 0.000 0.259 0.000
Intercept Test statistic -2.867 -15.856" -2.375 -15.864"
p-value 0.157 0.000 0.149 0.000
Intercept and | Test statistic -3.532 -15.843" -3.583 -15.851"
linear trend p-value 0.037" 0.000 0.032" 0.000
Decision Non- Stationary Non- Stationary
stationary stationary

*and ™ Rejection at 1% and 5% significance levels.

94 | Afro-Asian Journal of Scientific Research (AAJSR)



Table 3 shows that the p-values of the ADF for LOP and AOP series exceed the 1% significance
level, implying that the null hypothesis is accepted and the two series are non-stationary. In contrast,
the p-values for the differenced series (dllop and dlaop) are below 5%, confirming stationarity. To
identify the mean equations different ARMA models with p < 2 and g < 1 were estimated using the MLE
method. The AR and MA orders were determined by the ACF and the PACF (Figure 2), which suggest
g=1and p =1 or 2. Accordingly, a set of mixed ARIMA models was constructed and compared using
the AIC and SIC criteria, with results showed in Table 4.

Table (4): Information Criteria Comparison of the ARIMA Models.

Libya Algeria
AR L) AIC SIC AIC SIC
ARIMA (1,1,0) 1742831 | -1.725895 -1.823082 ~1.806146
ARIMA (0,1,1) 1761053 | -1.744117 | -1.841180 1.824244
ARIMA (1,1,1) 1761863 | -1.736459 | -1.841530 1.816126
ARIMA (2,1,0) 1759827 | -1.734423 | -1.840419 ~1.815015
ARIMA (2,1,1) 1757854 | -1.723982 | -1.838842 ~1.804970

Table 4 shows that, the AIC selects ARIMA(1,1,1) as the optimal model, while SIC suggests
ARIMA(0,1,1). Parameters of both selected models were estimated, with results in Table 5. Results
indicating that all coefficients in the both ARIMA(0,1,1) and ARIMA(1,1,1) models for LOP and AOP are
significant at the 1% level. Following the estimation phase, several diagnostic tests were used to explore
the effectiveness of the selected models, and the results are presented at the bottom of Table 5.

Table (5): Results of Estimation and Diagnostic Tests for Selected ARIMA Mosels.

Model Libya Algeria
Parameter | ARIMA (0,1,1) ARIMA (1,1,1) ARIMA (0,1,1) ARIMA (1,1,1)
a - -0.221" - -0.214"
o 0.322" 0.523" 0.322" 0.517
i 0.009" 0.009" 0.009" 0.009"
Diagnostic tests
Q(20) 24.780 22.861 22.993 21.540
Q2(20) 200.71" 221.19" 193.97 208.50"
JB 1822.64 1564.64" 985.75" 865.97"
Heteroskedasticity test: ARCH(1) and ARCH(10)
F-statistic 224.24 266.87 214.86 245.20°
nR? 154.85 173.97 150.34" 164.53"
F-statistic 25.59° 30.83" 23.65 27.12
nR? 170.28" 191.45" 161.64" 176.76"

*and ™ Rejection at 1% and 5% significance levels.

The results of diagnostic tests on the residuals of the selected ARIMA models (Table 5) confirm that
they behave as white noise (Ljung-Box test, p-values > 0.01), while the Ljung-Box test of the squared
residuls suggests that the squared residuals are not independent, and there is the precense of ARCH
effect (p-values < 0.01). The JB tests reject normality in the two models. The F-statistics and nR? in
ARCH tests indicate that the ARCH effect is evident on the squared residuals (p-values < 0.01), so
conditional variance must be modeled. Consequently, multiple hybrid ARIMA-GARCH models were
estimated using normal, Student-t, and GED error distributions, and GARCH orders were set to p <
land g <1 . Initial estimation of 18 hybrid models showed that ARIMA-GARCH(1,1) models were
unstable (a+g > 1) and were excluded, leaving 12 candidate models. AIC and SIC values for these
models summarized in Table 6, were used to select the final specification.

Table (6): Information Criteria Comparison for the ARIMA-GARCH Models.

ARIMA-GARCH/ Error Libya Algeria
Distribution AlIC SIC AlIC SIC
ARIMA (0,1,1)-GARCH(1,0)-N -2.075569 -2.050165 -2.117785 -2.092381
ARIMA (0,1,1)-GARCH(1,0)-t -2.098990 | -2.065118 | -2.138500 -2.104628
ARIMA (0,1,1)-GARCH(1,0)-GED -2.088252 | -2.053380 | -2.129354 -2.095482
ARIMA (0,1,1)-GARCH(0,1)-N -1.804594 -1.779191 -1.872465 -1.847061
ARIMA (0,1,1)-GARCH(0,1)-t -2.008677 -1.974805 -2.050341 -2.016469
ARIMA (0,1,1)-GARCH(0,1)-GED | -1.963160 | -1.929288 | -2.008166 -1.974294
ARIMA (1,1,1)-GARCH(1,0)-N -2.072894 | -2.038970 | -2.120263 -2.086339
ARIMA (1,1,1)-GARCH(1,0)-t -2.096254 | -2.054849 | -2.138701 -2.096296
ARIMA (1,1,1)-GARCH(1,0)-GED -2.088294 -2.045889 -2.132771 -2.090366
ARIMA (1,1,1)-GARCH(0,1)-N -1.808970 -1.775046 -1.875867 -1.841943
ARIMA (1,1,1)-GARCH(0,1)-t -2.012061 | -1.969656 | -2.051066 -2.008661
ARIMA (1,1,1)-GARCH(0,1)-GED -1.967137 -1.924732 -2.008893 -1.966488
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Table 6 shows for LOP, the optimal model according to both AIC and SIC is the ARIMA(0,1,1)-
GARCH (1,0)-t model with the Student-t distribution, followed by ARIMA(1,1,1)-GARCH(1,0)-t model.
For AOP, the AIC suggests the ARIMA(1,1,1)-GARCH(1,0)-t, while the SIC selects the ARIMA(0,1,1)-
GARCH(1,0)-t. Forecast performance was compared between these candidate models, and their
estimated coefficients are presented in Table 7. The estimated coefficients for the two selected models
(Table 7) are statistically significant at the 1% level in both mean and variance equations, except for
AR(1) in ARIMA(1,1,1,)-GARCH1(1,0) for LOP, which is significant at 10%. Diagnostic tests indicate
that both residuals and the squared residuals are uncorrelated (Ljung-Box test, p-values > 0.01).
Normality is rejected; while the ARCH tests up to lag 10 confirm the absence of conditional
heteroscedasticity.

Table (7): Results of Estimation and Diagnostic Tests for Selected ARIMA-GARCH Mosels.

Model Libya Algeria
Parameter ARIMA (0,1,1) ARIMA (1,1,1) ARIMA (0,1,1) ARIMA (1,1,1)
GARCH(1,0t | GARCH(1,0)-t | GARCH(1,0)-t | GARCH(1,0)-t
Mean equation
12 - -0.298 - -0.424
6 0.203" 0.490" 0.226" 0.621"
Variance equation
ay 0.004" 0.004" 0.004" 0.004"
a 0.551 0.546" 0.496" 0.506"
T-DIST. D 9.318" 9.053 9.907 9.867
Diagnostic tests
Q(20) 21.211 22.001 17.771 20.469
Q3(20) 24.991 24.774 24.096 25.029
JB 62.903" 61.023" 59.923" 50.186"
Heteroskedasticity test: ARCH(10)
F-statistic 0.993 1.047 0.863 0.992
nR? 9.954 10.479 8.669 9.945

* Rejection at 1% significance level.

Finally, the out-of-sample forecast accuracy for the selected ARIMA-GARCH models was evaluated
using the past 12 months from July 2024 to June 2025. Forecast errors, including RMSE and MAE, are
calculated and reported in Table 8.

Table (8): Out-of-Sample Forecasting Performance of the ARIMA-GARCH Models.

Out-of-sample Forecast Evaluation Statistics
July 2024 to June 2025 ARIMA(0,1,1)- ARIMA(1,1,1)-
GARCH(1,0)-t GARCH(1,0)-t
series RMSE MAE RMSE MAE
Libya LOP 4,294 3.772 4177 3.661
dllop 0.059 0.051 0.058 0.050
Algeria AOP 4,152 3.707 3.979 3.543
dlaop 0.056 0.049 0.054 0.047

The comparisons of the out-of-sample prediction accuracy indicate that the ARIMA(1,1,1)-
GARCH(1,0)-t model performs best based on the RMSE and MAE measures, with lower values
compared to the ARIMA(0,1,1)-GARCH(1,0)-t model. In this case, the finding clearly demonstrate that
the ARIMA(1,1,1)-GARCH(1,0)-t model for both LOP and AOP is the best forecasting model. Figures 3
and 4 show the residuals plots and histograms for LOP and AOP using the best-fitting ARIMA(1,1,1)-
GARCH(1,0)-t model.
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Figure (3): Plot and Histogram of Residuals for LOP using ARIMA(1,1,1)-GARCH(1,0)-t Model.
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Figure (4): Plot and Histogram of Residuals for AOP using ARIMA(1,1,1)-GARCH(1,0)-t Model.

Conclusion:

This study employed hybrid ARIMA-GARCH models with normal, Student-t, and generalized error
distributions to model monthly domestic oil prices in Libya and Algeria over the period January 1983-
June 2025. Model selection based on AIC and SIC across twelve competing specifications identified
the ARIMA(0,1,1)-GARCH(1,0)-t and ARIMA(1,1,1)-GARCH(1,0)-t models as the best fit. Forecast
evaluation using RMSE and MAE measures indicated that the ARIMA(1,1,1)-GARCH(1,0)-t model
provides superior predictive accuracy. These findings highlight the importance of heavy-tailed error
distributions and volatility clustering in modeling domestic oil price dynamics, and demonstrating that
the ARIMA-GARCH models provide reliable short-term forecasting efficiency, and contribute to
supporting economic and policymakers in the two countries under study.
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