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Abstract:  

Quantile regression is considered a robust alternative to ordinary least squares (OLS) regression in the 
presence of outliers or heavy-tailed error distributions, providing insights into the conditional distribution 
of the response variable. The empirical mode decomposition (EMD) decomposes nonstationary and 
nonlinear signals into a finite set of orthogonal decomposition components, which are then used in 
several studies as new predictor variables in regression models. In this work, we develop the use of 
lasso, ridge, and elastic net regularizations in quantile regression utilising a modified percentile cross-
validation based on empirical mode decomposition (EMD). These proposed methods aim to identify the 
decomposed components that exhibit the strongest effects and address the multicollinearity among 
decomposition components to improve the prediction accuracy. The simulation study and numerical 
examples utilising the stock market applications dataset from three countries are applied. The results 
showed that the proposed methods outperformed other existing methods at different quantiles by 
producing a model free from multicollinearity and effectively identifying the decomposition components 
that have a significant impact on the response variable, with high prediction accuracy. 
  
Keywords: Empirical mode decomposition (EMD), Quantile regression, Ridge regularization, Lasso 
regularization, Elastic Net regularization, Multicollinearity. 

 :الملخص
توزيعات خطأ  في حال وجود قيم متطرفة أو (OLS) يعُتبر الانحدار الكمي بديلاً فعالاً لانحدار المربعات الصغرى العادية

الإشارات  (EMD) ثقيلة الذيل، مما يوفر رؤىً شاملة للتوزيع الشرطي لمتغير الاستجابة. يحُلل تحليل الوضع التجريبي
غير الثابتة وغير الخطية إلى مجموعة محدودة من مكونات التحليل المتعامدة، ثم تسُتخدم المكونات الناتجة في العديد من 

جديدة في نماذج الانحدار. في هذا العمل، نطُور استخدام تنظيمات اللاسو والتلال والشبكة المرنة الدراسات كمتغيرات تنبؤ 
تهدف هذه الطرق المقترحة إلى  .(EMD) في الانحدار الكمي مع التحقق النسبي المُعدَّل بناءً على تحليل الوضع التجريبي

الجة التعدد الخطي بين مكونات التحليل لتحسين دقة التنبؤ. تطُبق تحديد المكونات المُحللة التي تظُهر أقوى التأثيرات، ومع
دراسة المحاكاة والأمثلة العددية باستخدام مجموعة بيانات تطبيقات سوق الأسهم لثلاث دول. أظهرت النتائج أن الطرق 

ن التعدد الخطي، وتحديد المقترحة تفوقت على الطرق الأخرى القائمة عند نسب مئوية مختلفة، وذلك بإنتاج نموذج خالٍ م
 .مكونات التحليل التي لها تأثير كبير على متغير الاستجابة بدقة تنبؤ عالية
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(، الانحدار الكمي، تنظيم التلال، تنظيم لاسو، تنظيم الشبكة المرنة، EMDتحلل الوضع التجريبي ) الكلمات المفتاحية:
  التعدد الخطي.

Introduction: 
     The mean regression analysis has been widely studied, and its procedures typically focus on the 
mean of the response. However, even though it has excellent properties, e.g., linearity and 
unbiasedness, it is unreliable if the error term has a heavy-tailed distribution or contains outliers. On the 
other hand, quantile regression, introduced by (Koenker & Bassett, 1978), has gained popularity as an 
alternative to least squares regression in recent years. Quantile regression has become a popular 
approach for studying the relationship between the response variable and the predictor variables at any 
quantile of the conditional distribution function, providing a more comprehensive view of the 
phenomenon under study. Quantile regression does not make any distributional assumption about the 
error term in the model. It can provide comprehensive information about the relationship between the 
response variable and predictors across the whole conditional distribution (Koenker & Bassett, 1978). 
It is robust against outliers and can handle heteroscedastic datasets (as opposed to linear regression). 
These properties have led to its widespread use in practical applications. A quantile estimator can 
describe the entire conditional distribution of the response variable given predictors and provide an 
overall assessment of the predictors’ influence at various quantiles of the response variable (Koenker, 
2005). In the regression model, it is often assumed that there is no dependence among the predictor 
variables, which might not be valid. If this assumption is violated, multicollinearity arises. Furthermore, 
the regression coefficients may have large sampling variance and misleading signs, which affect both 
inference and estimation. Thus, multicollinearity is a major issue in regression analysis (Ali et al., 2019). 
     The empirical mode decomposition (EMD) technique, proposed by (Huang et al., 1998), 
decomposes nonlinear and non-stationary time series data into different intrinsic mode functions (IMFs) 
and a residual component through a sifting process. Unlike earlier methods such as wavelet analysis 
(Chan, 1995) and Fourier analysis (Titchmarsh, 1948), EMD does not require a priori conditions on the 
data, such as linearity or stationarity, but instead allows the data to speak for itself. The sifting approach 
produces decomposition components with different wavelengths, amplitudes, and frequencies, 
indicating that they may be functionally important (Huang, 2014). EMD provides a fully data-driven and 
unsupervised signal decomposition, possessing the perfect reconstruction property: superimposing all 
extracted IMFs with the slow residual trend reconstructs the original signal without loss of information 
or distortion (Faltermeier et al., 2011). These decomposition components can be used as predictor 
variables to study their impact on a response variable (Al-Jawarneh et al., 2021). 
     Combining the EMD algorithm with regularization regression has been performed in several scientific 
fields. Examples include ridge regression with EEMD by (Shen et al., 2012). (Chu et al., 2018) applied 
LASSO regression based on Ensemble EMD (EEMD), (Qin et al., 2016) applied the LASSO regression 
based on EMD, and (Masselot et al., 2018) proposed the LASSO regression based on noise-assisted 
multivariate EMD (NA-MEMD). Recently, (Al-Jawarneh et al., 2021) proposed Elastic Net Regression 
based on Empirical Mode Decomposition. (Al-Jawarneh & Ismail, 2022) studied the adaptive LASSO 
regression with an empirical mode decomposition algorithm for enhancing modelling accuracy. 
     Variable selection is an essential tool for studying important predictors from a large quantity of 
predictors to create a sparse model with higher forecast accuracy. Regularized regression techniques 
are essential variable selection methods based on the concept of a penalized objective function that 
simultaneously conducts variable selection and coefficient estimation (Khan et al., 2019). There is a 
wide variety of penalized regression techniques, such as the ridge regression proposed by (Hoerl & 
Kennard, 1970), the least absolute shrinkage and selection operator (LASSO) proposed by (Tibshirani, 
1996) and elastic net (EN) (Zou & Hastie, 2005), which combines both the ridge and Lasso penalties, 
and so on. 
     Furthermore, penalized approaches have also been applied successfully in quantile regression. For 
example, (Hu et al., 2021; Li & Zhu, 2008) proposed L1-penalized quantile regression model via the 
LASSO penalty. (Burgette et al., 2011) presented two approaches based on the LASSO and elastic net 
penalties for identifying potentially important predictors in quantile regression. To address 
multicollinearity, (Zaikarina et al., 2016) applied LASSO and ridge penalties in quantile regression with 
modified percentile cross-validation, and (Sadig & Bager, 2018) utilized ridge regression and quantile 
regression. Furthermore, (Yan & Song, 2019) studied penalized quantile regression with the elastic net 
(EnetQR) and adaptive elastic net penalty (AEnetQR). Under the Bayesian framework, (Alhamzawi et 
al., 2012) proposed Bayesian estimation with adaptive LASSO quantile regression (BALQR). (Tang et 
al., 2020) proposed the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian 
point of view. Moreover, some researchers also have used the EMD method in quantile regression. For 
example, (Jaber et al., 2014) combined EMD, and local polynomial quantile regression (LLQ), and 
(Junior et al., 2020) employed the EEMD and Quantile-in-Quantile regression techniques. (Zhang et al., 
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2020) used EMD to reduce noise in wind speed series for probability density forecasting based on 
quantile regression and kernel density estimation. 
     The significant contribution of this study is to deal with the multicollinearity, and to enhance the 
accuracy of model selection by identifying the decomposition components that have the most effect on 
the response variable. In this study, the methods, known as QR-Ridge, QR-LASSO, and QR-EN method 
based on the EMD algorithm is applied. 
     The remainder of this paper is structured as follows: Section 2 details the EMD method, quantile 
regression, LASSO, ridge, and elastic net penalties, culminating in a description of the proposed 
methods. Sections 3 and 4 present simulation studies and real-world applications using daily stock 
market closing data, respectively. Finally, conclusions appear in Section 5. 
Methodology: 
     In this section, we discuss the methods used in this study. First, the EMD technique is selected, 
which deals with non-stationary and non-linear predictors by the sifting process. Second, quantile 
regression and the regularization methods including Ridge, Lasso, and Elastic Net regression will be 
applied. Finally, the proposed methods called EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN will 
be presented. 
Empirical Mode Decomposition (EMD): 
     The empirical mode decomposition (EMD) approach, introduced by (Huang et al., 1998), 
decomposes nonlinear and nonstationary time series data into several intrinsic mode functions (IMF's) 
components and one residual component via a sifting process. It is an unsupervised data-driven 
decomposition that does not require any prior information. Each IMF must satisfy two conditions: (1) 
the quantity of local extrema and the number of zero-crossings in the complete dataset must be equal 
or differ by one; and (2) at any given time point, the average value of the upper envelope, delineated 
by the local maxima, and the lower envelope, delineated by the local minima, must equal zero. The 
EMD process may be expressed simply as follows: 

𝑋(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡)

𝐾

𝑘=1

                              (1) 

     Where the 𝐶𝑘(𝑡) are intrinsic mode functions (IMFs), and 𝑟(𝑡) is the residue. The EMD algorithm 
analyzes signals using an iterative algorithm approach known as the sifting process. The sifting process 
separates the IMF and residual components from the original signal. It is worth noting that the IMF's 
have physical definitions for instantaneous frequency and amplitude. In other words, the IMFs are a 
physically meaningful time frequency energy representation of a time series (Huang & Wu, 2008). The 
flowchart for the sifting method is presented in Figure 1. The sifting procedure includes the following 
steps: The EMD implementation consists primarily of the following steps: 
Empirical Mode Decomposition (EMD) Algorithm: 
1. For given a time series 𝑿(𝒕), determine all local maxima and minima. 
2. Use cubic spline interpolation to connect all the minima and maxima, thereby forming the 

lower and upper envelopes.  
3. Calculate the local mean of the upper and lower envelope. 

𝒎(𝒕) =
𝒖(𝒕) + 𝒍(𝒕)

𝟐
 

4. Subtract the mean 𝒎(𝒕) from the signal 𝑿(𝒕) to obtain the first component   IMF candidate 

𝒉(𝒕) = 𝑿(𝒕) − 𝒎(𝒕) 
5. Repeat the sifting operation, which consists of step 1 to step 4 by considering 𝒉(𝒕) as new 

X(t) until Step 4. the stopping criteria is reached: 
I. 𝒎(𝒕) approaches zero 

II.  the numbers of zero-crossings and extrema of 𝒉(𝒕) differs at most by one, or 
III.  maximum number of iterations is reached 
6. Treat h(t) as new IMF and calculate the residual signal r(t) as: 𝒓(𝒕) = 𝑿(𝒕) − 𝒉(𝒕)  

7. Use 𝒓(𝒕) as new time series 𝑿(𝒕) and repeat steps 1 to 6, until all IMFs are obtained. 
     The EMD method decomposes the complex signal into a finite, often tiny number of intrinsic mode 
functions (IMFs). IMF contains high to low frequencies, using the local characteristic 90 scales, defined 
as the distance between two successive local extrema in the signal. An IMF is a function of symmetric 
upper and lower envelopes. Furthermore, the number of zero-crossings and extremes are equal or vary 
by no more than one (Huang et al., 1998). Each computed IMF has oscillatory scales in a small 
spectrum and is typically regarded as a quasi-stationary variable. For instance, an IMF obtained from a 
three-month economic time series can be interpreted as the seasonal component. The specific 
decomposition process of EMD is shown in Figure 1.  
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Figure (1): Flowchart for sifting process 

 
Quantile Regression (QR): 
     Classical regression models provide a symmetric linear relationship between dependent and 
independent variables, with findings based on the mean-value relationship rather than analyzing the 
relationship at various degrees of conditional distribution of the response variable. The quantile 
regression classic model introduced by (Koenker & Bassett, 1978) extends the classical linear 
regression model that provides consistent and detailed covariate effects on the dependent variable by 
modelling their time-varying degree and dependency structure (Koenker, 2005). The QR method 
investigates the dependency of the tails of the dependent variable's distributions, allowing for a concise 
explanation of the relationship between variables. 
Consider the linear regression model given by: 

𝑦𝑗 = 𝛽0 + 𝑥𝑗
𝑇𝛽 + 𝜀𝑗    𝑓𝑜𝑟 𝑗 = 1,2,3, … … , 𝑛                                     (2) 

     Where 𝑦𝑖 denotes the value of the response variable, 𝑥𝑗
𝑇 = (𝑥𝑗1, 𝑥𝑗2, … … , 𝑥𝑗𝑞) represents the 𝑞   

known predictor observations,  𝛽0 is the intercept, indicates  𝛽 a 𝑞 × 1   the vector of yet estimated 

unknown regression coefficients (parameters), and 𝜀𝑗 represents error terms. 

In quantile regression, the parameters are estimated by: 

𝛽̂𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑗=1

(𝑦𝑗 − 𝛽0 − 𝑥𝑗
𝑇𝛽)                          (3) 

Where 𝜌 is a quantile loss function, 𝜏 ∈ [0,1] 
LASSO Regularization: 
     The LASSO (Least Absolute Shrinkage and Selection Operator) is a regression method proposed 
by (Tibshirani, 1996). It is a standard statistical technique used with generalized linear models to select 
predictors by shrinking specific coefficients to zero. LASSO will constrain the regression coefficients by 
decreasing the residual number of squares under the condition that the sum of the absolute values of 
the coefficients is less than a constant. 
The LASSO estimates are defined as: 

𝛽(LASSO) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑗 − 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑖

𝑞

𝑖=1

) 𝑠. 𝑡. ∑|𝛽𝑖|

𝑞

𝑖=1

𝑛

𝑗=1

≤ 𝑠}                           (4) 

     Where 𝑠 ≥ 0 is a tuning parameter. The LASSO penalty is often called an L1 penalty because of the 
first power in the penalty term. 

𝛽(LASSO) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑗 − 𝛽0 + ∑ 𝑥𝑗𝑖𝛽𝑖

𝑞

𝑖=1

) + 𝜆 ∑|𝛽𝑖|

𝑞

𝑖=1

𝑛

𝑗=1

}                               (5) 

     Since LASSO effectively overcomes the limitations of conventional variable-selection approaches, 
it has gained a lot of interest in the fields of regression and classification. 
     We consider quantile regression with the LASSO penalty based on (Li & Zhu, 2008) LASSO 
regularized quantile regression estimation given by: 
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𝛽̂𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏
𝑛
𝑗=1 (𝑦𝑗 − 𝛽0 − 𝑥𝑗

𝑇𝛽) + 𝜆 ∑ |𝛽𝑖|,
𝑞
𝑖=1                       (6) 

where 𝜆 is the penalty parameter (regularizer) that controls the amount of shrinkage. 
Ridge Regularization: 
     (Hoerl & Kennard, 1970) proposed Ridge regression. It is the most common and has a wide range 
of applications. Ridge regression minimizes the residual sum of squares while keeping a limit on the 
coefficients' L2-norm. As a continuous shrinkage approach, Ridge regression achieves better prediction 
accuracy through a bias-variance trade-off. Ridge regression is usually used to overcome 
multicollinearity. 

𝛽(𝑅) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑗 − 𝛽0 + ∑ 𝑥𝑗𝑖𝛽𝑖

𝑞

𝑖=1

) + 𝜆 ∑ 𝛽𝑖
2

𝑞

𝑖=1

𝑛

𝑗=1

}                          (7) 

Where 𝜆 is a positive ridge parameter (0 < 𝜆 < 1). 
     The QR penalized with the ridge penalty (7) denoted by QR-Ridge. The QR-Ridge is given by the 
minimization problem of: 

𝛽̂𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑗=1

(𝑦𝑗 − 𝛽0 − 𝑥𝑗
𝑇𝛽) + 𝜆 ∑ 𝛽𝑖

2

𝑞

𝑖=1

                               (8) 

Elastic Net (EN) Regularization: 
     (Zou & Hastie, 2005) proposed the Elastic Net regularization technique. It is a convex combination 
of the LASSO and Ridge penalty. Estimates of Elastic Net coefficients are obtained by decreasing the 
regression loss function using an Elastic Net penalty: 

∑[𝛼|𝛽𝑖| + (1 − 𝛼)𝛽𝑖
2] ≤ 𝑘

𝑞

𝑖=1

                                     (9) 

The coefficient estimator in elastic-net regularized quantile regression is defined as: 

𝛽̂𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ 𝜌𝜏(𝑦𝑗 − 𝛽0 − 𝑥𝑗
𝑇𝛽) + 𝜆 ∑[𝛼|𝛽𝑖| + (1 − 𝛼)𝛽𝑖

2]

𝑞

𝑖=1

𝑛

𝑗=1

}                          (10) 

     Which is the LASSO penalty for 𝛼 = 1 (Hoerl & Kennard, 1970), the Ridge penalty for 𝛼 = 0  (Hoerl 
& Kennard, 1970) and the Elastic Net penalty for 0 ≤ 𝛼 ≤ 1 (Zou & Hastie, 2005). 
The Proposed Methods:  
     In order to improve prediction accuracy, we proposed three hybrid prediction models, namely EMD-
QR-Ridge, EMD-QR-LASSO and EMD-QR-EN. The flowchart of the proposed method is shown in 
Figure 2. It can be summarized as the following steps: 
Step 1: Using the EMD method, each original signal 𝑋(𝑡) is decomposed into a finite set of IMF 

components and one residual component, expressed as follows. 

𝑋(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡)

𝐾

𝑘=1

                                  (11) 

Step 2: Use all the decomposition components in Step 1 as predictor variables to explain the behavior 
of the response variable (Masselot et al., 2018). 

𝑦(𝑡) = ∑ [∑ 𝐶𝑖𝑘𝛽𝑖𝑘 + 𝑟𝑖𝑘(𝑡)𝛽𝑖𝑘

𝐾

𝑘=1

] + 𝜀(𝑡)

𝑞

𝑖=1

                             (12) 

Step 3: Apply the proposed methods: 
i. The EMD-QR-Ridge method: 

𝑚𝑖𝑛
𝛽

[
𝜌𝜏

𝑛
(𝑦(𝑡) − ∑(∑ 𝐶𝑖𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑖𝑘

𝑞

𝑖=1

− 𝑟𝑖(𝑡)𝛽𝑖𝑘+1))

2

] + 𝜆𝑃(𝛽)             (13)  

𝜆𝑃(𝛽) = 𝜆 ∑ [∑ 𝛽𝑖𝑘
2

𝐾+1

𝑘=1

]

𝑞

𝑖=1

 

ii. The EMD-QR-LASSO method: 

𝑚𝑖𝑛
𝛽

[
𝜌𝜏

𝑛
(𝑦(𝑡) − ∑(∑ 𝐶𝑖𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑖𝑘

𝑞

𝑖=1

− 𝑟𝑖(𝑡)𝛽𝑖𝑘+1))

2

] + 𝜆𝑃(𝛽)               (14)  

𝜆𝑃(𝛽) = 𝜆 ∑ [∑|𝛽𝑖𝑘|

𝐾+1

𝑘=1

] .

𝑞

𝑖=1

 

iii. The EMD-QR-EN method: 
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𝑚𝑖𝑛
𝛽

[
𝜌𝜏

𝑛
(𝑦(𝑡) − ∑(∑ 𝐶𝑖𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑖𝑘

𝑞

𝑖=1

− 𝑟𝑖(𝑡)𝛽𝑖𝑘+1))

2

] + 𝜆𝑃(𝛽)                (15)  

𝜆𝑃(𝛽) = 𝜆 (𝛼 ∑ [∑ 𝛽𝑖𝑘
2

𝐾

𝑘=1

]

𝑞

𝑖=1

+
(1 − 𝛼)

2
∑ [∑ 𝛽𝑖𝑘

2

𝐾+1

𝑘=1

]

𝑞

𝑖=1

) 

 
Step 4: The performance of the proposed models is compared with the traditional methods using the 

following criteria: The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 
Absolute Scaled Error (MASE), and correlation coefficient (R) are used to estimate the performance 
of hybrid models, as calculated by Equations (16) through (19), respectively. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)

2
𝑛

𝑗=1

                                                    (16) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑗 − 𝑦̂𝑗|

𝑛

𝑗=1

                                                              (17) 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑ (

|𝑦𝑗 − 𝑦̂𝑗|

1
𝑛 − 1

∑ |𝑦𝑗 − 𝑦𝑗−1|𝑛
𝑗=2

)

𝑛

𝑗=1

                            (18) 

𝑅2
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (𝑦̂𝑗 − 𝑦̅)
2𝑛

𝑗=1

∑ (𝑦𝑗 − 𝑦̅)
2𝑛

𝑗=1

                                                       (19) 

 

 
Figure 2: The full flowchart of the proposed models. 

 
     Where 𝑛 represents the number of datasets; 𝑦𝑗 denotes the observed data; 𝑦̂𝑗 indicates the predicted 

value of variable 𝑦𝑗 at the time period 𝑗. 

Numerical study: 
     This section presents two experiments demonstrating that regularized quantile regression based on 
EMD is an effective variable selection technique and improves prediction accuracy. We implemented 
the proposed models EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN in a simulation study to 
compare prediction accuracy between the proposed methods and traditional approaches. The sine 

function is used to illustrate the application of the proposed models. The predictor variables (𝑋𝑗) and 

response variable 𝑌 were simulated from signals selected by the work of (Abdullah Suleiman Al-
Jawarneh & Ismail, 2021). R programming was used for simulation study to evaluate and compare the 
methods. The simulation experiments are replicated 1000 times with a sample size of n = 300, and a 
time domain between (0 ≤  𝑡 ≥ 9)  and three quantile regression levels, 𝜏 = (0.25, 0.5, 0.75), are 
considered. The results are shown below.   
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𝑥1 = 0.8𝑡 + sin(0.3𝜋𝑡) + sin(2𝜋𝑡) + sin(7𝜋𝑡) + sin (9𝜋𝑡) 
𝑥2 = 0.4𝑡 + sin(0.2𝜋𝑡) + sin(6𝜋𝑡) + sin(7𝜋𝑡) + sin (9𝜋𝑡) 

𝑥3 = 0.6𝑡 + sin(𝜋𝑡) + sin(7𝜋𝑡) + sin (9𝜋𝑡) 

𝑦 = 0.5𝑡 + sin(𝜋𝑡) + sin(2𝜋𝑡) + sin(6𝜋𝑡) 
Numerical Results: 
     The VIFj values are given in Table 1 to test for multicollinearity among all orthogonal IMFs. Some of 
these values are greater than 10, such as VIF1, VIF6, VIF10, VIF11, VIF12, VIF14, and VIF15. The 
results indicate that high multicollinearity exists among the decomposition components (IMFs). Next, all 
the IMFs and the residual were applied to the proposed methods and other comparison methods. We 
compare the EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN models to the QR-R, QR-LASSO, 
and QR-EN models and report the comparison results. Table 2 shows the MSE, MAE, RMSE, and 
MASE results of the simulation experiments. 
The implementation of EMD significantly improves the estimation accuracy of the QR-R, QR-LASSO, 
and QR-EN methods. The experimental results show that the proposed methods obtain the lowest MSE, 
MAE, SSE, and RMSE values compared with other methods at the 0.25, 0.5, and 0.75 quantiles. Table 
2 indicates that the results offered by EMD-QR-EN outperform those of EMD-QR-Ridge and EMD-QR-
LASSO in MSE, MAE, RMSE, and MASE for each quantile. It has been found that EMD helps improve 
accuracy in most cases. 
 

Table (1): Variance inflation factors 

VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 VIF11 VIF12 VIF13 VIF14 VIF15 

1468.7 2.98 5.17 2.03 1.18 395.9 3.35 1.32 7.62 53.59 11.17 1462.9 1.94 35.91 448.8 

 
Table (2): Comparison our methods with other methods for simulation data. 

Quantile  EMD-QR-Ridge EMD-QR-LASSO EMD-QR- EN QR- Ridge QR- LASSO QR-EN 

0.25 

MSE 0.13758205   0.0283528 0.03870044 2.22346946 2.0807123 2.1124556 

MAE 0.2986859  0.1301398  0.1503589  1.216709  1.181563  1.188918 

RMSE 0.3709205  0.1683829 0.1967243 1.49113 1.442467 1.453429 

MASE 0.7310645  0.3185307 0.3680188 2.97802 2.891998    2.91 

R^2 0.9811517  0.9944794 0.9925894 0.5406485 0.5488937 0.5489137 

𝜆𝑚𝑖𝑛 0.1265206  0.0126521 0.04217353 0.1174104 0.0117410 0.0391368 

0.50 

MSE 0.07760487  0.0206842 0.02648215 1.44364178 1.3840013 1.3904879 

MAE 0.2314241  0.0997259 0.121662 0.9661434 0.9413294 0.9452408 

RMSE 0.2785765  0.1438201 0.1627334 1.201516 1.176436 1.17919 

MASE 0.5664344  0.2440895 0.2977802 2.364736 2.304001 2.313574 

R^2 0.9818196  0.9932629 0.9920501 0.5406225 0.5487139 0.5481236 

𝜆𝑚𝑖𝑛 0.1646433  0.0164643 0.05488109 0.1572392 0.0157239 0.0524131 

0.75 

MSE 0.14261358  0.0285204 0.03716151 2.21744426 2.0499641 2.104961 

MAE 0.3079185  0.125885 0.1501264 1.203926 1.164461 1.178595 

RMSE 0.3776421  0.1688798 0.1927732 1.489109 1.43177 1.450848 

MASE 0.7536622  0.3081165 0.3674498 2.946733 2.850139 2.884732 

R^2 0.9792324  0.9938648 0.9920276 0.5399351 0.5480745 0.5488819 

𝜆𝑚𝑖𝑛 0.1268101  0.0126810 0.04227004 0.1305056 0.0130506 0.0435019 

 

 

Figure 3: The result of MSE from simulation study 
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Figure 4: The result of MAE from simulation study  

 

Figure 5: The result of MASE from simulation study  
 
     Figures 3, 4, and 5 present bar plots for the MSE, MAE and MASE, respectively. It can be seen that 
the results provided by EMD-QR-EN for each quantile outperform both EMD-QR-Ridge and EMD-QR-
LASSO in terms of MSE, MAE, RMSE, MAPE and MASE. It has been found that EMD is helpful for 
accuracy improvement in most cases. Generally, it is indicated that the introduction of EMD can improve 
the accuracy of estimation. The proposed hybrid EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN 
models outperform other estimation models in simulation data. On the contrary, in this study, the 
minimum MSE, MAE, RMSE, MAPE, and MASE values achieved by the other estimating models are 
higher than those of our models, which indicates that our proposed models are more accurate than 
those considered by others. Accordingly, the EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN 
models are suitable and reasonable for estimation.  
APPLICATION TO ACTUAL DATA: 
     In this study, to compare the suggested methods (EMD-QR-LASSO, EMD-QR-Ridge, EMD-QR-EN) 
performance to that of other techniques such as (EMD-LASSO, EMD-Ridge, EMD-EN), we use 
nonlinear and nonstationary time series from the daily stock market. The application has three variables: 
China's and Japan's daily closing stock market (predictor variables), and Singapore's daily closing stock 
market (response variable) for the period from March 1, 2011, to August 25, 2015, with 1,701 
observations. All data are downloaded from the Yahoo financial database. 
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Figure (6): Figure daily stock market Index are plotted over time. 

 
Application results: 
     Figure 6 displays a graphical representation of the original closing daily stock market signals for 
China, Japan, and Singapore. Figure 6 illustrates that the signals did not exhibit a constant value over 
time or follow straight lines, indicating that they were nonstationary and nonlinear. The EMD algorithm 
decomposes the original series predictor variables CH and JAP, as shown in Figure 7. The CHINA 
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signal has been decomposed into six IMFs and one residue component, while the JAPAN signal has 
been decomposed into eight IMFs and one residue component. 
 

 
Figure (7): EMD decomposition results of China and Japan signals 

 
Table (3): Variance inflation factors 

VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 VIF11 VIF12 VIF13 VIF14 VIF15 VIF16 

1.052 1.017 1.022 1.276 1.087 3.577 19.07 1.048 1.027 1.048 1.24 1.035 1.312 3.269 1.366 18.79 

 
Table (4): Comparison our methods with other methods for simulation data. 

Quantile  EMD-QR-Ridge EMD-QR-LASSO EMD-QR- EN QR- Ridge QR- LASSO QR-EN 

0.25 

MSE 0.2599072  0.2207811 0.2462280 0.3265920 0.3306543 0.3291636 

MAE 0.3594287  0.3328711 0.3506325 0.4053439 0.4072541 0.406479 

RMSE 0.509811  0.4698734 0.4962137 0.5714823 0.5750255 0.5737278 

MASE 5.758989  5.333467 5.618051 6.494672 6.525278 6.512858 

R^2 0.4386542  0.5270165 0.4776494 0.3021939 0.2960662 0.2980071 

0.50 

MSE 0.1801750  0.1625618 0.1736424 0.2067098 0.2050822 0.2057799 

MAE 0.2948102  0.2809755 0.2896979 0.3227566 0.3219075 0.3222266 

RMSE 0.4244702  0.4031895 0.4167042 0.4546535 0.45286 0.4536297 

MASE 4.723632  4.501963 4.641719 5.171406 5.157802 5.162915 

R^2 0.4977066  0.5384446 0.5139128 0.4052256 0.4052836 0.4052794 

0.75 

MSE 0.2732941  0.2776650 0.2925501 0.2851579 0.2847990 0.2819129 

MAE 0.3744988  0.3762371 0.38335 0.3887371 0.3890388 0.3877008 

RMSE 0.5227754  0.5269392 0.540879 0.5340018 0.5336656 0.5309547 

MASE 6.000453  6.028304 6.142271 6.228587 6.23342 6.211983 

R^2 0.4165107  0.42279 0.3829844 0.3634616 0.3712168 0.3731046 

 
     Table 3 illustrates that VIF results reveal that some decomposition components have values greater 
than 10, such as IMF7 and IMF16. These high values indicate that high multicollinearity exists among 
the decomposition components (IMFs). The prediction results for the close daily stock market are 
presented in Table 4, which compares the results obtained with the QR-Ridge, QR-LASSO and QR-EN 
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models for the daily stock market. Table 4 shows that the MSE of the proposed (EMD-QR-Ridge, EMD-
QR-LASSO, EMD-QR-EN) models are, respectively, (0.2599072, 0.2207811, 0.2462280). It can be 
observed that these values are smaller than those of other models.  The numbers in bold indicate that 
our methods have the best performance for this close daily stock market under these performance 
measures. According to the prediction results, we can infer that the performance of our methods 
outperforms that of the other methods.  
     Table 5 illustrates how to estimate the coefficients of the predictor variables (IMFs and residual 
components) for our regression methods, indicating that our EMD-QR-LASSO and EMD-QR-EN 
methods behave similarly to LASSO quantile regression in terms of variable selection. Except for EMD-
QR-Ridge, all predictor variables are included in the final model. Both regression techniques can reduce 
the number of predictor variables. For example, neither EMD-QR-LASSO regards IMF8, IMF9, IMF11, 
and IMF14 as important factors at 0.75. 
     In Figures 9 and 10, it can be seen that the EMD-QR-LASSO model exhibits the best prediction 
performance at 0.25 and 0.50, compared to the EMD-QR-Ridge and EMD-QR-EN models. Whereas 
the lowest MSE and MAE in 0.75 is EMD-QR-EN. Overall, it shows that (QR-Ridge, QR-LASSO and 
QR-EN) models will significantly improve when introducing EMD. 
 

Table (5): Coefficients estimation for the predictor variables in the close daily stock market. 
 0.25 0.50 0.75 

 EMD-QR-
Ridge 

EMD-QR-
LASSO 

EMD-QR- 
EN 

EMD-QR-
Ridge 

EMD-QR-
LASSO 

EMD-QR- 
EN 

EMD-QR-
Ridge 

EMD-QR-
LASSO 

EMD-QR- 
EN 

𝝀𝒎𝒊𝒏 0.07492588 0.0074926 0.024975
2 

0.1169624 0.0116962 0.0389874
8 

0.0954545
5 

0.0095455 0.0318181 

𝜷𝟎 -97.870 -388.96 -18.582 -93.1849 -222.525 -135.581 -87.1851 -148.31 -61.387 

𝜷𝟏 0.00005 0 0 0.00009 0.00002 0.00005 0.00012 0.00007 0.00008 

𝜷𝟐 0.00017 0.00011 0.00012 0.00014 0.00012 0.00011 0.00016 0.00009 0.00008 

𝜷𝟑 0.00012 0.00012 0.00011 0.00012 0.00007 0.00008 0.0002 0.00016 0.00018 

𝜷𝟒 0.00022 0.00022 0.00021 0.00015 0.00016 0.00015 0.00008 0.00007 0.00006 

𝜷𝟓 -0.00003 -0.00006 -0.00004 0.00002 -0.00002 0 0.00007 0.00004 0.00005 

𝜷𝟔 0.00006 0.00012 0.00008 0.00009 0.00011 0.00011 0.00007 0.00011 0.00007 

𝜷𝟕 0.00008 0.00018 0.00011 0.00006 0.00011 0.00008 0.00002 0.00004 0 

𝜷𝟖 0.00005 0 0 0.00009 0 0.00002 0.00007 0 0 

𝜷𝟗 0.0001 0 0.00003 0.00003 0 0 0.00001 0 0 

𝜷𝟏𝟎 -0.00003 -0.00003 -0.00002 -0.00006 0 -0.00001 0.00009 0.00007 0.00005 

𝜷𝟏𝟏 -0.0001 0.00001 -0.00009 -0.00007 -0.00005 -0.00005 -0.00002 0 0 

𝜷𝟏𝟐 0.0001 0.00001 0.0001 0.00017 0.00018 0.00016 0.00021 0.0002 0.0002 

𝜷𝟏𝟑 0.0001 0.00001 0.0001 0.00016 0.00019 0.00016 0.00021 0.0002 0.0002 

𝜷𝟏𝟒 0.0001 0.00009 0.00009 0.00002 0.000000 0.000000 0.00007 0 0.00007 

𝜷𝟏𝟓 0.0001 0.00008 0.00009 0.00015 0.00015 0.00015 0.00019 0.00021 0.0002 

𝜷𝟏𝟔 0.01016 0.03848 0.0187 0.00975 0.02233 0.01387 0.00925 0.0152 0.00675 

 
Conclusion: 
     This paper presents significant findings that extend the concept of using EMD multi-scale data 
decomposition with penalized quantile regression in the field of time series analysis. This approach 
utilizes the time and frequency domains to determine the relationship among variables, thereby 
improving model selection. This study concludes that providing more stationary time series data 
improves predictive performance. This conclusion motivates us to make the original time series data 
more stationary, to enhance the prediction accuracy of the model selection. Based on the above 
analysis, this study has developed three new hybrid methods by combining EMD and penalized quantile 
regression, namely EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN, to enhance prediction 
accuracy. Subsequently, these methods are applied to simulation and real-world datasets and 
compared with the traditional methods, where the simulation and empirical results indicate that the 
proposed methods effectively address issues stemming from nonstationary and nonlinear signals. This 
is achieved by utilizing the EMD algorithm, which decomposes the original nonstationary and nonlinear 
signals into orthogonal IMF components and one residual component. 
     Moreover, the proposed methods have been effective in identifying the most important 
decomposition components, which have the most substantial effects on the response variable, thereby 
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enhancing the study of the relationship between these components and the response variable using 
the EMD method. The simulation and empirical results also demonstrate that the proposed methods, 
based on EMD, yield better predictive accuracy compared to other approaches. This suggests that 
EMD-based techniques are particularly effective for improving the accuracy of predictive models in the 
research context. Finally, the proposed methods produce a model free from multicollinearity among the 
decomposition components and have high prediction precision with lower prediction error (PE). 
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