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Abstract:

Quantile regression is considered a robust alternative to ordinary least squares (OLS) regression in the
presence of outliers or heavy-tailed error distributions, providing insights into the conditional distribution
of the response variable. The empirical mode decomposition (EMD) decomposes nonstationary and
nonlinear signals into a finite set of orthogonal decomposition components, which are then used in
several studies as new predictor variables in regression models. In this work, we develop the use of
lasso, ridge, and elastic net regularizations in quantile regression utilising a modified percentile cross-
validation based on empirical mode decomposition (EMD). These proposed methods aim to identify the
decomposed components that exhibit the strongest effects and address the multicollinearity among
decomposition components to improve the prediction accuracy. The simulation study and numerical
examples utilising the stock market applications dataset from three countries are applied. The results
showed that the proposed methods outperformed other existing methods at different quantiles by
producing a model free from multicollinearity and effectively identifying the decomposition components
that have a significant impact on the response variable, with high prediction accuracy.

Keywords: Empirical mode decomposition (EMD), Quantile regression, Ridge regularization, Lasso
regularization, Elastic Net regularization, Multicollinearity.
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Introduction:

The mean regression analysis has been widely studied, and its procedures typically focus on the
mean of the response. However, even though it has excellent properties, e.g., linearity and
unbiasedness, it is unreliable if the error term has a heavy-tailed distribution or contains outliers. On the
other hand, quantile regression, introduced by (Koenker & Bassett, 1978), has gained popularity as an
alternative to least squares regression in recent years. Quantile regression has become a popular
approach for studying the relationship between the response variable and the predictor variables at any
guantile of the conditional distribution function, providing a more comprehensive view of the
phenomenon under study. Quantile regression does not make any distributional assumption about the
error term in the model. It can provide comprehensive information about the relationship between the
response variable and predictors across the whole conditional distribution (Koenker & Bassett, 1978).
It is robust against outliers and can handle heteroscedastic datasets (as opposed to linear regression).
These properties have led to its widespread use in practical applications. A quantile estimator can
describe the entire conditional distribution of the response variable given predictors and provide an
overall assessment of the predictors’ influence at various quantiles of the response variable (Koenker,
2005). In the regression model, it is often assumed that there is no dependence among the predictor
variables, which might not be valid. If this assumption is violated, multicollinearity arises. Furthermore,
the regression coefficients may have large sampling variance and misleading signs, which affect both
inference and estimation. Thus, multicollinearity is a major issue in regression analysis (Ali et al., 2019).

The empirical mode decomposition (EMD) technique, proposed by (Huang et al., 1998),
decomposes nonlinear and non-stationary time series data into different intrinsic mode functions (IMFs)
and a residual component through a sifting process. Unlike earlier methods such as wavelet analysis
(Chan, 1995) and Fourier analysis (Titchmarsh, 1948), EMD does not require a priori conditions on the
data, such as linearity or stationarity, but instead allows the data to speak for itself. The sifting approach
produces decomposition components with different wavelengths, amplitudes, and frequencies,
indicating that they may be functionally important (Huang, 2014). EMD provides a fully data-driven and
unsupervised signal decomposition, possessing the perfect reconstruction property: superimposing all
extracted IMFs with the slow residual trend reconstructs the original signal without loss of information
or distortion (Faltermeier et al., 2011). These decomposition components can be used as predictor
variables to study their impact on a response variable (Al-Jawarneh et al., 2021).

Combining the EMD algorithm with regularization regression has been performed in several scientific
fields. Examples include ridge regression with EEMD by (Shen et al., 2012). (Chu et al., 2018) applied
LASSO regression based on Ensemble EMD (EEMD), (Qin et al., 2016) applied the LASSO regression
based on EMD, and (Masselot et al., 2018) proposed the LASSO regression based on noise-assisted
multivariate EMD (NA-MEMD). Recently, (Al-Jawarneh et al., 2021) proposed Elastic Net Regression
based on Empirical Mode Decomposition. (Al-Jawarneh & Ismail, 2022) studied the adaptive LASSO
regression with an empirical mode decomposition algorithm for enhancing modelling accuracy.

Variable selection is an essential tool for studying important predictors from a large quantity of
predictors to create a sparse model with higher forecast accuracy. Regularized regression techniques
are essential variable selection methods based on the concept of a penalized objective function that
simultaneously conducts variable selection and coefficient estimation (Khan et al., 2019). There is a
wide variety of penalized regression techniques, such as the ridge regression proposed by (Hoerl &
Kennard, 1970), the least absolute shrinkage and selection operator (LASSO) proposed by (Tibshirani,
1996) and elastic net (EN) (Zou & Hastie, 2005), which combines both the ridge and Lasso penalties,
and so on.

Furthermore, penalized approaches have also been applied successfully in quantile regression. For
example, (Hu et al., 2021; Li & Zhu, 2008) proposed L1-penalized quantile regression model via the
LASSO penalty. (Burgette et al., 2011) presented two approaches based on the LASSO and elastic net
penalties for identifying potentially important predictors in quantile regression. To address
multicollinearity, (Zaikarina et al., 2016) applied LASSO and ridge penalties in quantile regression with
modified percentile cross-validation, and (Sadig & Bager, 2018) utilized ridge regression and quantile
regression. Furthermore, (Yan & Song, 2019) studied penalized quantile regression with the elastic net
(EnetQR) and adaptive elastic net penalty (AEnetQR). Under the Bayesian framework, (Alhamzawi et
al., 2012) proposed Bayesian estimation with adaptive LASSO quantile regression (BALQR). (Tang et
al., 2020) proposed the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian
point of view. Moreover, some researchers also have used the EMD method in quantile regression. For
example, (Jaber et al., 2014) combined EMD, and local polynomial quantile regression (LLQ), and
(Junior et al., 2020) employed the EEMD and Quantile-in-Quantile regression techniques. (Zhang et al.,
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2020) used EMD to reduce noise in wind speed series for probability density forecasting based on
guantile regression and kernel density estimation.

The significant contribution of this study is to deal with the multicollinearity, and to enhance the
accuracy of model selection by identifying the decomposition components that have the most effect on
the response variable. In this study, the methods, known as QR-Ridge, QR-LASSO, and QR-EN method
based on the EMD algorithm is applied.

The remainder of this paper is structured as follows: Section 2 details the EMD method, quantile
regression, LASSO, ridge, and elastic net penalties, culminating in a description of the proposed
methods. Sections 3 and 4 present simulation studies and real-world applications using daily stock
market closing data, respectively. Finally, conclusions appear in Section 5.

Methodology:

In this section, we discuss the methods used in this study. First, the EMD technique is selected,
which deals with non-stationary and non-linear predictors by the sifting process. Second, quantile
regression and the regularization methods including Ridge, Lasso, and Elastic Net regression will be
applied. Finally, the proposed methods called EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN will
be presented.

Empirical Mode Decomposition (EMD):

The empirical mode decomposition (EMD) approach, introduced by (Huang et al.,, 1998),
decomposes nonlinear and nonstationary time series data into several intrinsic mode functions (IMF's)
components and one residual component via a sifting process. It is an unsupervised data-driven
decomposition that does not require any prior information. Each IMF must satisfy two conditions: (1)
the quantity of local extrema and the number of zero-crossings in the complete dataset must be equal
or differ by one; and (2) at any given time point, the average value of the upper envelope, delineated
by the local maxima, and the lower envelope, delineated by the local minima, must equal zero. The
EMD process may be expressed simply as follows:

K

X® =) C©) +1(0) M
k=1

Where the C,(t) are intrinsic mode functions (IMFs), and r(t) is the residue. The EMD algorithm
analyzes signals using an iterative algorithm approach known as the sifting process. The sifting process
separates the IMF and residual components from the original signal. It is worth noting that the IMF's
have physical definitions for instantaneous frequency and amplitude. In other words, the IMFs are a
physically meaningful time frequency energy representation of a time series (Huang & Wu, 2008). The
flowchart for the sifting method is presented in Figure 1. The sifting procedure includes the following
steps: The EMD implementation consists primarily of the following steps:

Empirical Mode Decomposition (EMD) Algorithm:

1. For given atime series X(t), determine all local maxima and minima.

2. Use cubic spline interpolation to connect all the minima and maxima, thereby forming the

lower and upper envelopes.

3. Calculate the local mean of the upper and lower envelope.

m(e) = u(t) + 1(t)
4. Subtract the mean m(t) from the signal X(t) to obtain the first component IMF candidate
h(t) = X(t) —m(t)
5. Repeat the sifting operation, which consists of step 1 to step 4 by considering h(t) as new
X(t) until Step 4. the stopping criteria is reached:
I m(t) approaches zero

Il. the numbers of zero-crossings and extrema of h(t) differs at most by one, or

[l maximum number of iterations is reached

6. Treat h(t) as new IMF and calculate the residual signal r(t) as: r(t) = X(t) — h(t)

7. Use r(t) as new time series X(t) and repeat steps 1 to 6, until all IMFs are obtained.

The EMD method decomposes the complex signal into a finite, often tiny number of intrinsic mode
functions (IMFs). IMF contains high to low frequencies, using the local characteristic 90 scales, defined
as the distance between two successive local extrema in the signal. An IMF is a function of symmetric
upper and lower envelopes. Furthermore, the number of zero-crossings and extremes are equal or vary
by no more than one (Huang et al., 1998). Each computed IMF has oscillatory scales in a small
spectrum and is typically regarded as a quasi-stationary variable. For instance, an IMF obtained from a
three-month economic time series can be interpreted as the seasonal component. The specific
decomposition process of EMD is shown in Figure 1.
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Quantile Regression (QR):

Classical regression models provide a symmetric linear relationship between dependent and
independent variables, with findings based on the mean-value relationship rather than analyzing the
relationship at various degrees of conditional distribution of the response variable. The quantile
regression classic model introduced by (Koenker & Bassett, 1978) extends the classical linear
regression model that provides consistent and detailed covariate effects on the dependent variable by
modelling their time-varying degree and dependency structure (Koenker, 2005). The QR method
investigates the dependency of the tails of the dependent variable's distributions, allowing for a concise
explanation of the relationship between variables.

Consider the linear regression model given by:
yi=Bo+xB+e forj=123,....,n (2)

Where y; denotes the value of the response variable, x]-T = (le,sz, ...... ,x]-q) represents the q

known predictor observations, f, is the intercept, indicates S a g x1 the vector of yet estimated
unknown regression coefficients (parameters), and ¢; represents error terms.
In quantile regression, the parameters are estimated by:

n

B = arggmin ) pe (v; = fo — 2 6) 3
j=1
Where p is a quantile loss function, 7 € [0,1]
LASSO Regularization:

The LASSO (Least Absolute Shrinkage and Selection Operator) is a regression method proposed
by (Tibshirani, 1996). It is a standard statistical technique used with generalized linear models to select
predictors by shrinking specific coefficients to zero. LASSO will constrain the regression coefficients by
decreasing the residual number of squares under the condition that the sum of the absolute values of
the coefficients is less than a constant.

The LASSO estimates are defined as:

n q q
B (LASSO) = argmin Z (yj —Bo + le-jﬂl) s. t.ZI,BiI <s @)

j=1
Where s > 0 is a tuning parameter. The LASSO penalty is often called an L1 penalty because of the
first power in the penalty term.

n q q
B(LASSO) = argmin Z <y,- —Bo + Z xﬁ/)’i> + AZIBL-I (5)

j=1
Since LASSO effectively overcomes the limitations of conventional variable-selection approaches,
it has gained a lot of interest in the fields of regression and classification.
We consider quantile regression with the LASSO penalty based on (Li & Zhu, 2008) LASSO
regularized quantile regression estimation given by:
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B‘r = argﬂmin Z?:l Pz (YJ .30 - xTﬁ) + /12 1|.Bz| (6)
where 1 is the penalty parameter (regularizer) that controls the amount of shrinkage.
Ridge Regularization:

(Hoerl & Kennard, 1970) proposed Ridge regression. It is the most common and has a wide range
of applications. Ridge regression minimizes the residual sum of squares while keeping a limit on the
coefficients' L2-norm. As a continuous shrinkage approach, Ridge regression achieves better prediction
accuracy through a bias-variance trade-off. Ridge regression is usually used to overcome
multicollinearity.

n q q
B(R) = argmin{ > (y,- ~Bo+ ). xjiﬁi> +2) B @
=1 i=1 i=1

Where A is a positive ridge parameter (0 < A < 1).
The QR penalized with the ridge penalty (7) denoted by QR-Ridge. The QR-Ridge is given by the
minimization problem of:

n q

Be = arggmin ) pe (v = fo—x[B) + 1) 2 ®
j=1 i=1

Elastic Net (EN) Regularization:

(Zou & Hastie, 2005) proposed the Elastic Net regularization technique. It is a convex combination
of the LASSO and Ridge penalty. Estimates of Elastic Net coefficients are obtained by decreasing the
regression loss function using an Elastic Net penalty:

q

D lalfil + (1 - @)p?l < k ©
i=1
The coefficient estimator in elastic-net regularized quantile regression is defined as:

Be = argmind > pe(y; = Bo = 5 B) + 2 ) lalfil + (1 = )f?] (10)
j=1 i=1

Which is the LASSO penalty for « = 1 (Hoerl & Kennard, 1970), the Ridge penalty for « = 0 (Hoerl
& Kennard, 1970) and the Elastic Net penalty for 0 < a < 1 (Zou & Hastie, 2005).

The Proposed Methods:

In order to improve prediction accuracy, we proposed three hybrid prediction models, namely EMD-
QR-Ridge, EMD-QR-LASSO and EMD-QR-EN. The flowchart of the proposed method is shown in
Figure 2. It can be summarized as the following steps:

Step 1: Using the EMD method, each original signal X(t) is decomposed into a finite set of IMF
components and one residual component, expressed as follows.
K

X© =) GO +7® (11)
k=1
Step 2: Use all the decomposition components in Step 1 as predictor variables to explain the behavior
of the response variable (Masselot et al., 2018).

y(t) = Z [Z CirBir + 7t (O Pirc

i=1
Step 3: Apply the proposed methods:
i.  The EMD-QR-Ridge method:

a K 2
min = ((t) YO €l ik - n(t)ﬁlkﬂ)> 2P (13)

i=1 k=1

+e(t) (12)

qd rK+1
=2 [Z ﬁfk]
i=1 Lk=1

ii. The EMD-QR-LASSO method:
q K 2
min —<y(t) D Zcik(t)m-k —n(t)ﬁim)) +2P() (19)
i=1 k=1

4 rK+1
=2y lZlﬂiu].
i=1Lk=1

iii. The EMD-QR-EN method:
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q K 2
min %(y(t) Z Z lk(t)ﬁlk—n(t)ﬁlhl)) + 2P(B) (15)

PP = A(a [Z ﬁlk] “”Z[liﬂfkb

Step 4: The performance of the proposed models is compared with the traditional methods using the
following criteria: The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Scaled Error (MASE), and correlation coefficient (R) are used to estimate the performance
of hybrid models, as calculated by Equations (16) through (19), respectively.

n
1
RMSE = EZ(y,-—y,)z (16)
=1
1 n
MAE =;Z|yj -3, 17)
=1
AN ly; = 9l
MASE = ;Z (N’—”) 18)
j=1 zlyi_yj—ll
oSSR _ (- 9) 19

SST Py 1(y _y)

Input vector X

lEMD

P08 66

Y

( Penalized Quantile Regression J
[
‘ | 1

‘ LASSO Regression ‘ Elastic Net Regression ’

Ridge Regression

Comparison proposed models with
traditional models (EMD-RR, EMD-
LASSO and EMD-ELN)

Figure 2: The full flowchart of the proposed models.

Where n represents the number of datasets; y; denotes the observed data; ¥; indicates the predicted
value of variable y; at the time period j.

Numerical study:

This section presents two experiments demonstrating that regularized quantile regression based on
EMD is an effective variable selection technique and improves prediction accuracy. We implemented
the proposed models EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN in a simulation study to
compare prediction accuracy between the proposed methods and traditional approaches. The sine
function is used to illustrate the application of the proposed models. The predictor variables (XJ) and
response variable Y were simulated from signals selected by the work of (Abdullah Suleiman Al-
Jawarneh & Ismail, 2021). R programming was used for simulation study to evaluate and compare the
methods. The simulation experiments are replicated 1000 times with a sample size of n = 300, and a
time domain between (0 < t>9) and three quantile regression levels, t = (0.25,0.5,0.75), are
considered. The results are shown below.
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x; = 0.8t + sin(0.3nt) + sin(2xt) + sin(7nt) + sin(9nt)
x, = 0.4t + sin(0.2mt) + sin(6mt) + sin(7xt) + sin(9nt)
x5 = 0.6t + sin(mt) + sin(7nt) + sin(9nt)
y = 0.5t + sin(nt) + sin(2mt) + sin(6mt)
Numerical Results:

The VIFj values are given in Table 1 to test for multicollinearity among all orthogonal IMFs. Some of

these values are greater than 10, such as VIF1, VIF6, VIF10, VIF11, VIF12, VIF14, and VIF15. The
results indicate that high multicollinearity exists among the decomposition components (IMFs). Next, all
the IMFs and the residual were applied to the proposed methods and other comparison methods. We
compare the EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN models to the QR-R, QR-LASSO,
and QR-EN models and report the comparison results. Table 2 shows the MSE, MAE, RMSE, and
MASE results of the simulation experiments.
The implementation of EMD significantly improves the estimation accuracy of the QR-R, QR-LASSO,
and QR-EN methods. The experimental results show that the proposed methods obtain the lowest MSE,
MAE, SSE, and RMSE values compared with other methods at the 0.25, 0.5, and 0.75 quantiles. Table
2 indicates that the results offered by EMD-QR-EN outperform those of EMD-QR-Ridge and EMD-QR-
LASSO in MSE, MAE, RMSE, and MASE for each quantile. It has been found that EMD helps improve
accuracy in most cases.

Table (1): Variance inflation factors

VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 VIF11 VIF12 VIF13 VIF14 VIF15

1468.7 | 2.98 5.17 2.03 1.18 395.9 3.35 1.32 7.62 53.59 11.17 1462.9 1.94 35.91 448.8

Table (2): Comparison our methods with other methods for simulation data.

Quantile EMD-QR-Ridge EMD-QR-LASSO EMD-QR- EN QR- Ridge QR- LASSO QR-EN
MSE 0.13758205 0.0283528 0.03870044 2.22346946 2.0807123 2.1124556
MAE 0.2986859 0.1301398 0.1503589 1.216709 1.181563 1.188918
0.25 RMSE 0.3709205 0.1683829 0.1967243 1.49113 1.442467 1.453429
: MASE 0.7310645 0.3185307 0.3680188 2.97802 2.891998 2.91
R"2 0.9811517 0.9944794 0.9925894 0.5406485 0.5488937 0.5489137
Amin 0.1265206 0.0126521 0.04217353 0.1174104 0.0117410 0.0391368
MSE 0.07760487 0.0206842 0.02648215 1.44364178 1.3840013 1.3904879
MAE 0.2314241 0.0997259 0.121662 0.9661434 0.9413294 0.9452408
0.50 RMSE 0.2785765 0.1438201 0.1627334 1.201516 1.176436 1.17919
' MASE 0.5664344 0.2440895 0.2977802 2.364736 2.304001 2.313574
R"2 0.9818196 0.9932629 0.9920501 0.5406225 0.5487139 0.5481236
Anin 0.1646433 0.0164643 0.05488109 0.1572392 0.0157239 0.0524131
MSE 0.14261358 0.0285204 0.03716151 2.21744426 2.0499641 2.104961
MAE 0.3079185 0.125885 0.1501264 1.203926 1.164461 1.178595
075 RMSE 0.3776421 0.1688798 0.1927732 1.489109 1.43177 1.450848
' MASE 0.7536622 0.3081165 0.3674498 2.946733 2.850139 2.884732
R"2 0.9792324 0.9938648 0.9920276 0.5399351 0.5480745 0.5488819
Ain 0.1268101 0.0126810 0.04227004 0.1305056 0.0130506 0.0435019
2.5
2
® EMD-QR-R
W 1o B EMD-QR-LASSO
)
= EMD-QR-EN
m QR-R
0.5
B QR-LASSO
o W_ - o_ B QR-EN
0.25 0.5 0.75
guantile

Figure 3: The result of MSE from simulation study
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Figure 5: The result of MASE from simulation study

Figures 3, 4, and 5 present bar plots for the MSE, MAE and MASE, respectively. It can be seen that
the results provided by EMD-QR-EN for each quantile outperform both EMD-QR-Ridge and EMD-QR-
LASSO in terms of MSE, MAE, RMSE, MAPE and MASE. It has been found that EMD is helpful for
accuracy improvement in most cases. Generally, it is indicated that the introduction of EMD can improve
the accuracy of estimation. The proposed hybrid EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN
models outperform other estimation models in simulation data. On the contrary, in this study, the
minimum MSE, MAE, RMSE, MAPE, and MASE values achieved by the other estimating models are
higher than those of our models, which indicates that our proposed models are more accurate than
those considered by others. Accordingly, the EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN
models are suitable and reasonable for estimation.

APPLICATION TO ACTUAL DATA:

In this study, to compare the suggested methods (EMD-QR-LASSO, EMD-QR-Ridge, EMD-QR-EN)
performance to that of other techniques such as (EMD-LASSO, EMD-Ridge, EMD-EN), we use
nonlinear and nonstationary time series from the daily stock market. The application has three variables:
China's and Japan's daily closing stock market (predictor variables), and Singapore's daily closing stock
market (response variable) for the period from March 1, 2011, to August 25, 2015, with 1,701
observations. All data are downloaded from the Yahoo financial database.

181 | Afro-Asian Journal of Scientific Research (AAJSR)



Singapore

85

8.0
|

75

70

60
|

2011 2012 2013 2014 2015

Date

China

10000 12000 14000 16000
| | | |

8000
|

T T
2011 2012 2013 2014 2015

Date

Japan

18000 20000

14000 16000

8000 10000 12000

T T T T T
2011 2012 2013 2014 2015

Date

Figure (6): Figure daily stock market Index are plotted over time.

Application results:

Figure 6 displays a graphical representation of the original closing daily stock market signals for
China, Japan, and Singapore. Figure 6 illustrates that the signals did not exhibit a constant value over
time or follow straight lines, indicating that they were nonstationary and nonlinear. The EMD algorithm
decomposes the original series predictor variables CH and JAP, as shown in Figure 7. The CHINA
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signal has been decomposed into six IMFs and one residue component, while the JAPAN signal has
been decomposed into eight IMFs and one residue component.
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Figure (7): EMD decomposition results of China and Japan signals
Table (3): Variance inflation factors
VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 | VIF11 | VIF12 | VIF13 | VIF14 | VIF15 | VIF16
1.052 | 1.017 | 1.022 | 1.276 | 1.087 | 3.577 | 19.07 | 1.048 | 1.027 | 1.048 | 1.24 1.035 | 1.312 | 3.269 | 1.366 | 18.79
Table (4): Comparison our methods with other methods for simulation data.
Quantile EMD-QR-Ridge EMD-QR-LASSO EMD-QR- EN QR- Ridge QR- LASSO QR-EN
MSE 0.2599072 0.2207811 0.2462280 0.3265920 0.3306543 0.3291636
MAE 0.3594287 0.3328711 0.3506325 0.4053439 0.4072541 0.406479
0.25 RMSE 0.509811 0.4698734 0.4962137 0.5714823 0.5750255 0.5737278
MASE 5.758989 5.333467 5.618051 6.494672 6.525278 6.512858
R"2 0.4386542 0.5270165 0.4776494 0.3021939 0.2960662 0.2980071
MSE 0.1801750 0.1625618 0.1736424 0.2067098 0.2050822 0.2057799
MAE 0.2948102 0.2809755 0.2896979 0.3227566 0.3219075 0.3222266
0.50 RMSE 0.4244702 0.4031895 0.4167042 0.4546535 0.45286 0.4536297
MASE 4.723632 4.501963 4.641719 5.171406 5.157802 5.162915
R"2 0.4977066 0.5384446 0.5139128 0.4052256 0.4052836 0.4052794
MSE 0.2732941 0.2776650 0.2925501 0.2851579 0.2847990 0.2819129
MAE 0.3744988 0.3762371 0.38335 0.3887371 0.3890388 0.3877008
0.75
RMSE 0.5227754 0.5269392 0.540879 0.5340018 0.5336656 0.5309547
MASE 6.000453 6.028304 6.142271 6.228587 6.23342 6.211983
R"2 0.4165107 0.42279 0.3829844 0.3634616 0.3712168 0.3731046

Table 3 illustrates that VIF results reveal that some decomposition components have values greater
than 10, such as IMF7 and IMF16. These high values indicate that high multicollinearity exists among
the decomposition components (IMFs). The prediction results for the close daily stock market are
presented in Table 4, which compares the results obtained with the QR-Ridge, QR-LASSO and QR-EN
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models for the daily stock market. Table 4 shows that the MSE of the proposed (EMD-QR-Ridge, EMD-
QR-LASSO, EMD-QR-EN) models are, respectively, (0.2599072, 0.2207811, 0.2462280). It can be
observed that these values are smaller than those of other models. The numbers in bold indicate that
our methods have the best performance for this close daily stock market under these performance
measures. According to the prediction results, we can infer that the performance of our methods
outperforms that of the other methods.

Table 5 illustrates how to estimate the coefficients of the predictor variables (IMFs and residual
components) for our regression methods, indicating that our EMD-QR-LASSO and EMD-QR-EN
methods behave similarly to LASSO quantile regression in terms of variable selection. Except for EMD-
QR-Ridge, all predictor variables are included in the final model. Both regression techniques can reduce
the number of predictor variables. For example, neither EMD-QR-LASSO regards IMF8, IMF9, IMF11,
and IMF14 as important factors at 0.75.

In Figures 9 and 10, it can be seen that the EMD-QR-LASSO model exhibits the best prediction
performance at 0.25 and 0.50, compared to the EMD-QR-Ridge and EMD-QR-EN models. Whereas
the lowest MSE and MAE in 0.75 is EMD-QR-EN. Overall, it shows that (QR-Ridge, QR-LASSO and
QR-EN) models will significantly improve when introducing EMD.

Table (5): Coefficients estimation for the predictor variables in the close daily stock market.

0.25 0.50 0.75
EMD-QR- EMD-QR- | EMD-QR- EMD-QR- EMD-QR- EMD-QR- EMD-QR- EMD-QR- EMD-QR-

Ridge LASSO EN Ridge LASSO EN Ridge LASSO EN
Amin| 0.07492588 0.0074926 0.024975 0.1169624 0.0116962 0.0389874 0.0954545 0.0095455 0.0318181
Bo | -97.870 -388.96 -218.582 -93.1849 -222.525 fg135.581 '-587.1851 -148.31 -61.387
B1 0.00005 0 0 0.00009 0.00002 0.00005 0.00012 0.00007 0.00008
B2 0.00017 0.00011 0.00012 0.00014 0.00012 0.00011 0.00016 0.00009 0.00008
B3 0.00012 0.00012 0.00011 0.00012 0.00007 0.00008 0.0002 0.00016 0.00018
Ba 0.00022 0.00022 0.00021 0.00015 0.00016 0.00015 0.00008 0.00007 0.00006
Bs -0.00003 -0.00006 -0.00004 0.00002 -0.00002 0 0.00007 0.00004 0.00005
Be 0.00006 0.00012 0.00008 0.00009 0.00011 0.00011 0.00007 0.00011 0.00007
B 0.00008 0.00018 0.00011 0.00006 0.00011 0.00008 0.00002 0.00004 0
Bs 0.00005 0 0 0.00009 0 0.00002 0.00007 0 0
Bo 0.0001 0 0.00003 0.00003 0 0 0.00001 0 0
B1o | -0.00003 -0.00003 -0.00002 -0.00006 0 -0.00001 0.00009 0.00007 0.00005
B11 | -0.0001 0.00001 -0.00009 -0.00007 -0.00005 -0.00005 -0.00002 0 0
B12 | 0.0001 0.00001 0.0001 0.00017 0.00018 0.00016 0.00021 0.0002 0.0002
B13 | 0.0001 0.00001 0.0001 0.00016 0.00019 0.00016 0.00021 0.0002 0.0002
B1s | 0.0001 0.00009 0.00009 0.00002 0.000000 0.000000 0.00007 0 0.00007
B1s | 0.0001 0.00008 0.00009 0.00015 0.00015 0.00015 0.00019 0.00021 0.0002
B1s | 0.01016 0.03848 0.0187 0.00975 0.02233 0.01387 0.00925 0.0152 0.00675

Conclusion:

This paper presents significant findings that extend the concept of using EMD multi-scale data
decomposition with penalized quantile regression in the field of time series analysis. This approach
utilizes the time and frequency domains to determine the relationship among variables, thereby
improving model selection. This study concludes that providing more stationary time series data
improves predictive performance. This conclusion motivates us to make the original time series data
more stationary, to enhance the prediction accuracy of the model selection. Based on the above
analysis, this study has developed three new hybrid methods by combining EMD and penalized quantile
regression, namely EMD-QR-Ridge, EMD-QR-LASSO, and EMD-QR-EN, to enhance prediction
accuracy. Subsequently, these methods are applied to simulation and real-world datasets and
compared with the traditional methods, where the simulation and empirical results indicate that the
proposed methods effectively address issues stemming from nonstationary and nonlinear signals. This
is achieved by utilizing the EMD algorithm, which decomposes the original nonstationary and nonlinear
signals into orthogonal IMF components and one residual component.

Moreover, the proposed methods have been effective in identifying the most important
decomposition components, which have the most substantial effects on the response variable, thereby
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enhancing the study of the relationship between these components and the response variable using
the EMD method. The simulation and empirical results also demonstrate that the proposed methods,
based on EMD, yield better predictive accuracy compared to other approaches. This suggests that
EMD-based techniques are particularly effective for improving the accuracy of predictive models in the
research context. Finally, the proposed methods produce a model free from multicollinearity among the
decomposition components and have high prediction precision with lower prediction error (PE).
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